
Stochastic Control

Neil Walton

January 29, 2021

1

Contents

0 Optimal Control 4
0.1 Dynamic Programming 5
0.2 Markov Chains with Rewards 17
0.3 Markov Decision Processes 29
0.4 Infinite Time Horizon 37
0.5 Algorithms for MDPs 55
0.6 Optimal Stopping . 73
0.7 Inventory Control. 79
0.8 Partially Observable MDPs 85
0.9 LQR and the Kalman Filter 90

1 Continuous Time Control 102
1.1 Continuous Time Dynamic Programming 103
1.2 Calculus of Variations 108
1.3 Pontyagin’s Maximum Prinicple 113
1.4 Stochastic Integration 115
1.5 Diffusion Control Problems 117
1.6 Merton Portfolio Optimization 121

2 Stochastic Approximation 134
2.1 Lyapunov Functions . 135
2.2 Robbins-Monro. 148
2.3 Stochastic Gradient Decent 157
2.4 Asynchronous Update 164
2.5 ODE method for Stochastic Approximation 167
2.6 Online Convex Optimization 173

3 Bandits and Experts 177
3.1 Stochastic Multi-Armed Bandit 178
3.2 Upper Confidence Bound. 183
3.3 Lai and Robbins Lower Bound. 186

2

CONTENTS NSW

3.4 Gittins’ Index Theorem? 190
3.5 Non-Stochastic Multi-armed Bandits? 195
3.6 Stochastic Regression 200

4 Tabular Reinforcement Learning 207
4.1 Principles of Reinforcement Learning 208
4.2 Policy Evaluation: MC and TD methods 212
4.3 Q-learning . 224
4.4 SARSA . 230

5 Reinforcement Learning with Function Approximation 233
5.1 Temporal Differences: Linear Approximation 234
5.2 Policy Gradients . 239
5.3 Linear Approximation and TD Learning 247
5.4 Linear Approximation and Stopping 253
5.5 Cross Entropy Method 260

6 Reinforcement Learning with Neural Networks 263
6.1 Deep Q-Network (DQN) 264

A Appendix 267
A.1 Probability. 267
A.2 Stochastic Integration 272
A.3 Gronwall’s Lemma . 273
A.4 Projections . 275
A.5 Misc Results . 275
A.6 Utility Theory . 276
A.7 Lagrangian Optimization and Duality 278
A.8 Linear Algebra . 282
A.9 Random Matrices . 288

B Function Approximation 292
B.1 Overview of Statistical Learning 293
B.2 Linear Regression . 293
B.3 Training, Development and Test sets 296
B.4 Bias and Variance. 299
B.5 Neural Networks . 304

3

Chapter 0

Optimal Control

• Dynamic Programs; Markov Decision Processes; Bellman’s Equa-
tion; Complexity aspects.

• Markov chains; Markov property; Summing Markov chain Re-
wards; Convergence to Equilibrium.

• Infinite Time Horizon Control: Positive, Discounted and Nega-
tive Programming; Occupancy Measure.

• Algorithms: Policy Improvement & Policy evaluation; Value It-
eration; Policy Iteration; Linear Program formulation; Asyn-
chronous Value Iteration.

• Optimal Stopping; One-Step-Look-Ahead; Excessive Majorant.

• Inventory Control; (s,S) policy.

• POMDP; Belief states.

• Linear-Quadratic Regularization (LQR); Riccati Equation; LQG;
Certainty Equivalence; Kalman Filter.

4

0.1. DYNAMIC PROGRAMMING NSW

0.1 Dynamic Programming

• Dynamic Program (Definition).

• Bellman’s Equation.

• Principle of Optimality.

• Curse of Dimensionality.

The Basic Idea.
Let’s discuss the basic form of the problems that we want to solve.
See Figure 1. Here there is a controller (in this case for a computer

Figure 1: A control loop.

game). It sends actions to an environment (in this case the com-
puter) which then returns its current state and a reward. Based
on this, the controller selects a new action; the environment then
returns its next state and reward and so on it goes. We want to find
a sequence of actions that maximizes the sum of these rewards.

This interaction between states, actions and rewards are the
key building blocks of dynamic programming, Markov decision pro-
cesses, and much of the topics in rest of these notes. In each of
these, our task is to optimize the sequence of rewards that we re-
ceive over time.

5

0.1. DYNAMIC PROGRAMMING NSW

An Introductory Example
Let’s solve a simple dynamic program. In the figure below there is a
tree consisting of a root node labelled R and two leaf nodes colored
grey. For each edge, there is a cost. Your task is to find the lowest
cost path from the root node to a leaf.

1 5 5 6 2 1 0 2

7307

1 1

R

There are a number of ways to solve this, such as enumerating
all paths. However, we are interested in one approach where the
problem is solved backwards, through a sequence of smaller sub-
problems. Specifically, once we reach the penultimate node on the
left (in the dashed box) then it is clearly optimal to go left with a
cost of 1. This solves an easier sub problem and, after solving each
sub problem, we can then attack a slightly bigger problem. If we
solve for each leaf in this way we can solve the problem for the
antepenultimate nodes (the node before the penultimate node).

Thus the problem of optimizing the cost of the original tree can
be broken down to a sequence of much simpler optimizations given
by the shaded boxed below.

1 5 5 6 2 1 0 2

7307

1 1

R

From this we see the optimal path has a cost of 5 and consists of
going right, then left, then right.

6

0.1. DYNAMIC PROGRAMMING NSW

Let’s consider the problem a little more generally in the next fig-
ure. The tree on the righthand-side has a lowest cost path of value
Lrhs and the lefthand-side tree has lowest cost Llhs and the edges
leading to each, respective tree, have costs lrhs and llhs. Once the
decision to go left or right is made (at cost lrhs or llhs) it is optimal to
follow the lowest cost path (at cost Lrhs or Llhs). So L, the minimal
cost path from the root to a leaf node satisfies

L = min
a∈{lhs,rhs}

{la + La} .

l
left R

l
right

L
left L

right

Similarly, convince yourself that the same argument applies from
any node x in the tree network that is

Lx = min
a∈{lhs,rhs}

{
la + Lx(a)

}
.

where Lx is the minimum cost from x to a leaf node and where for
a ∈ {lhs, rhs} x(a) is the node to the lefthand-side or righthand-side of
x. The equation above is an example of the Bellman equation for this
problem, and in our example, we solved this equation recursively
starting from leaf nodes and working our way back to the root node.

The idea of solving a problem from back to front and the idea of
iterating on the above equation to solve an optimisation problem
lies at the heart of dynamic programming.

7

0.1. DYNAMIC PROGRAMMING NSW

Definitions for Dynamic Programming
We now give a general definition of a dynamic programming.

States, actions, rewards and next states. We consider a discrete,
finite set of times t = 0, 1, ...,T. We let x and X denote the state and
set of states. We let xt ∈ X be the state of our dynamic program at
time t. We let a and A denote an action and set of actions. The (in-
stantaneous) reward for taking action a in state x is r(a, x). Further,
r(x) is the reward for terminating in state x at time T.1 If action a is
taken when in state x then the next state in X, which we denote by
x̂, is given by

x̂ = f (x, a), (Plant eq)

for a function f : X × A → A. This is sometimes called the plant
equation of the dynamic program.

Policy, cumulative reward and value function. A policy π = (πt :
t = 0, ...,T−1) choses an action πt at each time t = 0, 1, ...,T−1. Starting
from an initial state x0, a the policy gives a sequence of states

xt+1 = f (xt, πt). (1)

We evaluate how a good each policy is by the sum of its rewards:

R(x0, π) := r(x0, π0) + r(x1, π1) + ... + r(xT−1, πT−1) + r(xT)

Given the cumulative reward function R(x, π), we define the value
function to be the maximum reward:

V(x0) = max
π

R(x0, π) .

The main objective of dynamic programming is to solve this opti-
mization. To do this, it helps to consider the future rewards and
value after each time t, which we respectively define by

Rt(xt, π) :=
T−1∑

s=T−t

r(xs, πs) + r(xT) , Vt(xt) := max
π

Rt(xt, π) .

Dynamic ProgramDefinition. We summarize the discussion above
with the following definition.

1Since we do not allow further actions from time T onwards, we can ignore the
dependence on a.

8

0.1. DYNAMIC PROGRAMMING NSW

Def 1 (Dynamic Program). Given initial state x0, a dynamic program
is the optimization

V(x0) := Maximize R(x0, π) :=
T−1∑
t=0

r(xt, πt) + rT(xT) (DP)

subject to xt+1 = f (xt, πt), t = 0, ...,T − 1
over πt ∈ A, t = 0, ...,T − 1

Further, let Rτ(xτ, π) (Resp. Vτ(xτ)) be the objective (Resp. optimal
objective) for (DP) when the summation is started from t = T − τ,
rather than t = 0.

The Bellman Equation
In our introductory example, we saw we could solve a dynamic pro-
gram by a sequence of much simpler optimizations. The resulting
sequence of equations is called the Bellman Equation. The Bellman
equation is central to the study of control problems. The following
result gives shows the optimality of the Bellman Equation for dy-
namic programming.

Thrm 2 (Bellman’s Equation). V0(x) = rT(x) and for t = T − 1, ..., 0

Vt(x) = max
a∈A
{r(x, a) + Vt−1(x̂)} , (Bell eq)

where x ∈ X and x̂ = f (x, a).

Proof. Let πt := (πT−t, ..., πT−1). Note that Rt(x,πt) = r(x, πT−t)+Rt−1(x̂,πt−1).

Vt(x) = max
πt
{Rt(x,πt)} = max

a
max
πt
{r(x, a) + Rt−1(x̂,πt−1)}

= max
a

{
r(x, a) + max

πt−1
Rt−1(x̂,πt−1)

}
= max

a
{r(x, a) + Vt−1(x̂)} .

�

Some Code
Below is some code (in Python) to solve a dynamic program. Notice
we can solve the dynamic program by repeatly calling the function
DP() until the solution is trivial at time=0.

9

0.1. DYNAMIC PROGRAMMING NSW

def DP(time , state , f , r ,A) :
’ ’ ’
Solves a dynamic program
’ ’ ’
i f time > 0 :
Q = [r [state] [action] + DP(time−1, f [state] [action]) for
action in A]
V = max(Q)

else :
Q = r [state]
V = max(Q)

return V

The Principle of Optimality
Dynamic programming and the Bellman equation was invented by
Richard Bellman. Bellman concisely summarizes why and when we
expect the Bellman equation to hold for an optimization problem:

“Principle of Optimality: An optimal policy has the
property that whatever the initial state and initial deci-
sions are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the
first decisions." – Richard Bellman [4]

A good example is to see what this means is to consider shortest
paths and longest paths in an undirected graph. See Figure 2. The
shortest path from S to D is colored grey. Notice that this contains
the shortest path from B to D, i.e. once we get from S to B what
remains of the optimal solution is to take the shortest path from B to
D. Here we see that shortest-path problems satisfy is the principle
of optimality. So, we can apply the dynamic programming and the
Bellman equation to solve shortest path problems.

Notice, however, the longest path (without loops) from D to S
contains B, but this does not take the longest path from B to S.
So we cannot apply dynamic programming to solve longest path
problems on an (undirected) graph.

10

0.1. DYNAMIC PROGRAMMING NSW

Figure 2: Shortest path from S to D.

The Curse of Dimensionality
Another term coined by Bellman is The Curse of Dimensionality. Al-
though this used as a generic term applicable to many algorithms, it
is particularly true of dynamic programming. Essentially the point
is that as the size of a dynamic programming problem grows – in
terms of thee number of states and its time horizon – then the com-
putation required to solve the optimization grows in unreasonably
rapidly and usually exponentially. E.g. for our introductory exam-
ple of a tree, if we let there be n nodes that can reached after each
action and let the depth of the tree be T, then the number of Bell-
man equations that we need to solve to find the minimum cost path
from the root node is, roughly, of the order of nT.

Thus to apply the dynamic programming, we need to either con-
sider optimization problems that have additional structure that makes
them easier to solve, or we need to find ways to approximating the
solution to these problems. We will consider both of these ap-
proaches in these notes.

Other Observations
Let’s list a few more properties and smaller observations about dy-
namic programming.

Minimization. Notice we can change the definition of a dynamic
program to minimize costs c(x, a) rather than maximizing rewards
r(x, a). You can check that, in this case, the Bellman equation be-
comes

Lt(x) = min
a∈A

{
c(x, a) + Lt−1(x̂)

}
.

General functions. So far we have assumed that the transition
and reward function depends only on the current state x and the

11

0.1. DYNAMIC PROGRAMMING NSW

action taken a. Notice that the Bellman equation holds equally when
we consider rewards that depend on time t and the next state x̂
also. Also we can let the transition function f and the set of actions
depend on time t. This gives the Bellman equation

Vt(x) = max
a∈At

{
rt(x, a, x̂) + Vt+1(x̂)

}
where x̂ = ft(x, a). (You can check that the above “more general" for-
mulation and definition given previously are equivalent by an ap-
propriate choice of state space, action space and rewards.)

Dynamic Programming Examples
Ex 3. An investor has a fund. It has x pounds at time zero. Money
can’t be withdrawn. It pays r×100% interest per-year for T years. The
investor consumes proportion at of the interest and reinvests the rest.
What should the investor do to maximize consumption?

Ex 4. You invest in properties. The total value of these properties is
xt in year t = 1, ...,T. Each year t, you gain rent of rxt and you choose
to consume a proportion at ∈ [0, 1] of this rent. The remaining propor-
tion is reinvested in buying new property. Further you pay mortgage
payments of mxt which are deducted from your consumed wealth.
Here m < r. Your objective is to maximize the wealth consumed over
T years. Prove that if WT−s(x) = xρs for some constant ρs then

ρs = max{r −m + ρs−1, (1 + r)ρs−1 −m}.

Ex 5 (Shortest Paths). Consider a directed graph G = (V,E) each edge
has a cost, ci j for each (i, j) ∈ E. Take a vertex d. Let Li be the length
of the shorest path from i to d and let Li(t) be the shortest path from i
to d that uses t steps.

i) Argue that Li(t) satisfies, Ld(t) = 0 and

Li(t + 1) = min
j:(i, j)∈E

{
ci j + L j(t)

}
, for i , d.

(Here you may assume that Ld(t) = 0 for all t ≥ 0 and Li(t) = ∞ unless
assigned a value in the above set of equalities.)

12

0.1. DYNAMIC PROGRAMMING NSW

ii) In addition to satisfying Ld = 0, argue that Li satisfies the equations

Li = min
j:(i, j)∈E

{
ci j + L j

}
, for i , d.

iii) Your answer to part ii) describes a algorithm called the Bellman-
Ford algorithm. Use it to find the shortest path from node a to node
d in the following graph

a

b c

d

ef

g

4

3

10

6

7

8

3

6

2

4

0

1

Ex 6 (Scheduling). There are N appointments that need to be su-
cessively scheduled over time. Each appointment i = 1, ...,N requires
ti units of time and when completed has reward ri. Given discount
factor β ∈ (0, 1), the total reward arragning the appointments in order
1, 2, ...,N is

R(1, ...,N) = r1β
t1 + r2β

t1+t2 + ... + rNβ
t1+...+tN ,

i) Write down a dynamic program for the optimal discounted reward.
(Here let W(S) be the optimal reward when S ⊂ {1, ...,N} is the remain-
ing set of unassigned appointments.)

ii) Argue that it is optimal to order appointments so that the indices

Gi =
riβti(1 − β)

1 − βti

indexed from highest to lowest.

13

0.1. DYNAMIC PROGRAMMING NSW

Ex 7 (Discrete time LQ-regularization). We consider discrete time LQ
minimization, here you minimize the objective

min
a0,..,aT−1

x>T RxT +

T−1∑
t=0

[x>t Rxt + a>t Qat]

subject to xt+1 = Axt + Btat, t = 0, ...,T − 1

Here R and Q are positive semi-definate matrices.

i) Show that the Bellman equation for this dynamic program is

Lt(x) = min
a

{
x>Rx + a>Qa + Lt+1(Ax + Ba)

}
ii) Assuming the solution is of the form Lt(x) = x>Λtx find the action
that a minimizes the above Bellman equation is given by

a = (Q + B>ΛtB)−1B>ΛtAx

iii) Using your answer to Part ii), show that

Λt−1 = R + A′>ΛtA − (A>ΛtB)(Q + B′ΛtB)−1B′ΛtA.

This is the Riccarti Recursion (the discrete time analogue of the Ric-
carti equation).

Ex 8 (Critical Path Analysis / Longest Paths). A project consists
of a number of tasks that must be completed in a specified order.
This is represented by a directed acyclic graph G = (V,E). Each task
j ∈ V takes an amount of time c(j) to complete and the task cannot
be started until all its parent tasks par(j) = {i : (i, j) ∈ E} have been
completed. We also let ch(j) = {k : (j, k) ∈ E} be the children of task j.

We let EST(j) and EFT(j) represent the earliest start time and ear-
liest finish time for task j.

i) Show that

EST(j) = max
i∈par(j)

{c(i) + EST(i)} ,

EFT(j) = c(j) + max
i∈par(j)

EFT(i) ,

with EST(j) = 0 and EFT(j) = c(j) if par(j) is empty.

14

0.1. DYNAMIC PROGRAMMING NSW

ii) Let L = max j EFT(j), the time that the project is completed. We let
LST(j) and LFT(j) be the latest start time and latest finish time for
task j (where the project is completed at time L). Give the equivalent
expressions to those found in part i), for the latests start and finish
times.

The critical path is said to be the set of tasks such that

EST(i) = LST(i), EFT(i) = LFT(i)

iii) Find the earliest start and finish times, and then find the latest
start and finish time for the following example:

Task Time Parents
a 1 -
b 3 a
c 1 a
d 2 c
e 1 c
f 3 b,c
g 2 d,e
h 1 f, g

iv) Find the critical path for the example from part iii).

Ex 9 (Forward Dynamic Programming). Notice that in the Bellman
equation we consider

Vt(xt) = max
at,...,aT−1

r(xt, at) + ... + r(xT−1, aT−1) + r(xT)

and we can recursively work out Vt backwards from t = T − 1, ..., 1.
However, suppose that we start with

Ut(xt) = max
a0,...,at−1

r(x0, a0) + r(x1, a1) + ... + r(xt−1, at−1)

where x0 is fixed and it is assume that xt is the next state after taking
action at−1 from state xt−1. (If no such solution – from x0 to xt in t steps
– exists then we set Ut(xt) = −∞)

Show that

Ut(xt) = max
xt−1,at−1: f (xt−1,at−1)=xt

{Ut−1(xt−1) + r(xt−1, at−1)}

15

0.1. DYNAMIC PROGRAMMING NSW

and U0(x0) = 0, and notice that

VT(x0) = max
aT−1: f (xT−1,aT−1)=xT

{UT−1(xT−1) + rT(xT)}

This approach to solving a dynamic program is sometimes referred to
as Forward Dynamic Program, because the iteration proceed forward
from their initial state x0.

Show (after reading the section on Markov decision processes),
that we cannot apply this forward dynamic programming approach
to MDPs.

Remark 10. Notice that the above approach has advantages over
the Backward approach taken in the Bellman equaion above that is
because we can start from an initial state x0 and then work out future
states iteratively through taking different actions. This is different
from the backward version where in principle we have to know all the
states that the dynamic programwill go to even if we do not know that
they will actually be visited from state x0 (which may not be feasible
in the case of infinite state-spaces).

References and Further Reading.
Much of the theory of dynamic programming and Markov decision
processes was laid out in the 1950’s by Richard Bellman. An excel-
lent early account of the field by Bellman is [4]. The textbooks of
Whittle [56] and Bertsekas [6] are noteworthy modern treatments
of the field.

16

0.2. MARKOV CHAINS WITH REWARDS NSW

0.2 Markov Chains with Rewards

• Discrete-time Markov chains; The Markov property.

• Jump-chain construction; Rewards and Potential Theory; Mar-
tingale Problems.

• Convergence to Equilibrium.

We highlight some of the key properties of Markov chains: how to
calculate transitions, how the past effects the current movement of
the processes, how to construct a chain, what the long run behavior
of the process may (or may not) look like and most importantly what
happens when we sum up rewards as the process evolves in time.

Introductory example: snakes and ladders
First, we give an initial example to better position our intuition.
Below in Figure 0.2, we are given a game of snakes and ladders
(or shoots and ladders in the USA). Here a counter (colored red) is
placed on the board at the start. You roll a dice. You move along the
numbered squares by an amount given by the dice. The objective is
to get to the finish. If the counter lands on a square with a snake’s
head, you must go back to the square at the snakes tail and, if
you land on a square at the bottom of a ladder, go to the top of the
ladder.

17

0.2. MARKOV CHAINS WITH REWARDS NSW

We let Xt be the position of the counter on the board after the dice
has been thrown t times. The processes X = (Xt : t ∈ Z) is a discrete
time Markov chain. Two things to note: First, note that given the
counter is currently at a state, e.g. on square 5, the next square
reached by the counter – or indeed the sequence of states visited
by the counter after being on square 5 – is not effected by the path
that was used to reach the square. I.e. This is called the Markov
Property. Second, notice the movement of the counter is a function
of two pieces of information the current state and the independent
random roll of the dice. In this way we can construct (or simulate)
the random process.

Definitions
We now give a definition for a Markov chain (in discrete time and
with a countable state space).

Let X be a countable set. An initial distribution

λ = (λx : x ∈ X)

is a positive vector whose components sums to one. A transition
matrix P = (Pxy : x, y ∈ X) is a postive matrix whose rows sum to one,
that is, for x ∈ X ∑

y∈X

Pxy = 1.

With an initial distribution λ and a transition matrix P, you can
define a Markov chain. Basically λx determines the probability the
process starts in state x Vand Pxy gives the probability of going to y
if you are currently in state x.

Def 11 (Discrete Time Markov Chain). We say that a sequence of
random variables X = (Xt : t ∈ Z+) is a discrete time Markov chain,
with initial distribution λ and transition matrix P if for x0, ..., xt+1 ∈ X,

P(X0 = x0) = λ0

and

P(Xt+1 = xt+1|Xt = xt, ...,X0 = x0) = P(Xt+1 = xt+1|Xt = xt) (Markov)
= Pxtxt+1

18

0.2. MARKOV CHAINS WITH REWARDS NSW

The condition (Markov) is often called the Markov property and
is the key defining feature of a Markov chain or, more generally,
Markov process. It states that the past (X1, ...,Xt−1) and future Xt+1

are conditionally independent of the present Xt. Otherwise stated,
is says that, when we know the past and present states (X1, ...,Xt) =
(x0, ..., xt), the distribution of the future states Xt+1,Xt+2, ... is only de-
termined by the present state Xt = xt. Think of a board game like
snakes and ladders, where you go in the future is only determined
by where you are now and not how you got there; this is the Markov
property.

Remark 12 (Further notation).

• We will often use the notation x̂ to denote the next state reached
by the Markov chain after being in state x. I.e.

x̂ ∼ Px = (Pxy : y ∈ X)

• We will sometimes use the notation

P(x1|x0) := Px0,x1

to denote transition probabilities.

• Interpreting a function R = (R(x) : x ∈ X) as a vector. We define
PR as the vector achieved by right multiplication to the matrix P,
i.e.

PR(x) :=
∑
y∈X

PxyR(y) .

Calculating Probabilities. It is worth noting that calculating vari-
ous probabilities and expectations for a Markov chain corresponds
to vector and matrix multiplication.

Prop 13. For X = (Xt : t ∈ Z+), a Markov chain with initial distribution
λ and transition Matrix P, it holds that
a)

P(X0 = x0,X1 = x1, ...,Xt = xt) = λx0Px0x1 ...Pxt−1xt

b)
P(Xt = x) = [λPt]x

19

0.2. MARKOV CHAINS WITH REWARDS NSW

where [λPt]x denotes the x-th component of the matrix λPt.
c)

Ex[r(Xt)] = Ptr(x)

where Ptr(x) is the x-th component of the vector Ptr.

Constructing Markov chains. The following proposition shows
that the evolution of a Markov chain can be constructed from its
the current state and an independent “dice throw". This is more
intuitive than the definition above and is useful when simulating
Markov chains.

Prop 14 (Constructing Markov Chains). Take a function f : X ×
[0, 1] → X, X0 a random variable on X, and (Ut)t≥0, independent uni-
form [0, 1] random variables. The sequence (Xt)t≥0 constructed with
the recursion

Xt+1 = f (Xt,Ut) for t = 0, 1, 2, ..

is a discrete time Markov chain. Moreover all discrete time Markov
chains can be constructed in this way.

Summing Rewards. In dynamic programming we were interested
in summing up rewards. Here is a brief result on that which we can
compare with the Bellman equation from Theorem 2.

Lemma 1. If

RT(x) = Ex

[T∑
t=0

r(Xt)
]

then
Rt(x) = r(x) + Ex [Rt−1(X1)]

Proof. We can take the first reward out of the expectation and pro-

20

0.2. MARKOV CHAINS WITH REWARDS NSW

ceed as follows

Rt(x) = r(x) + Ex

[t∑
s=1

r(Xt)
]

= r(x) + Ex

[
E
[t∑

s=1

r(Xt)
∣∣∣X1,X0 = x

]]
(Tower property)

= r(x) + Ex

[
E
[t∑

s=1

r(Xt)
∣∣∣∣X1

]]
(Markov Property)

= r(x) + Ex

[
Rt−1(X1)

]
(Definition)

as required. �

The following proposition will be useful when we want to sum up
a long sequence of rewards.

Prop 15 (Markov Chains and Potential Functions). For r : X → R a
bounded function and for β ∈ (0, 1),

R(x) = Ex

 ∞∑
t=0

βtr(Xt)

 (2)

is the unique solution to the equation

R(x) = β(PR)(x) + r(x), x ∈ X. (3)

Moreover, if function R̃ : X → R+ satisfies

R̃(x) ≥ β(PR̃)(x) + r(x), x ∈ X. (4)

then R̃(x) ≥ R(x), x ∈ X.

Before we embark on the proof a couple of quick remarks.

Remark 16. • Notice the expression (3) can equivalently be written
as

R(x) = r(x) + βEx[R(x̂)], ∀x ∈ X.

• For the “moreover” part above we can also switch the inequality.
You can check in the proof that if R̃ is bounded 2 and such that

R̃(x) ≤ β(PR̃)(x) + r(x), x ∈ X.
2We know if r is bounded then R in (2) is bounded.

21

0.2. MARKOV CHAINS WITH REWARDS NSW

then R̃(x) ≤ R(x), x ∈ X.
• The reward function can be generalized to the form r(x, x̂), so the
next state is included in the reward. Equation (3) now becomes

R(x) = E[r(x, x̂) + βR(x̂)], x ∈ X.

Proof. We first show that (3) holds. We give two short proofs: one
probabilistic and one algebraic. For that probabilistic proof, note
that for R(x) in (2)

R(x) = r(x) + Ex

[∞∑
t=1

βtr(Xt)
]

= r(x) + Ex

[
E
[∞∑

t=1

βtr(Xt)
∣∣∣X1,X0 = x

]]
(Tower property)

= r(x) + Ex

[
βE

[∞∑
t=1

βt−1r(Xt)
∣∣∣∣X1

]]
(Markov Property)

= r(x) + Ex

[
βR(X1)

]
(Time Homogenous)

= r(x) + β(PR)(x) .

So R(x) is a solution to (3).
For the algebraic proof, by Prop 13c) note that

R(x) =

∞∑
t=0

βtEx [r(Xt)] = r(x) + βPr(x) + β2P2r(x) +

The above sequence is a geometric series so we can use our usual
tricks for summing geometric series. Notice that multiplying the
above expression by βP gives

βPR(x) = βPr(x) + β2P2r(x) + β3P3r(x) +

Thus

R(x) − βPR(x) = r(x)

which, again, gives the required result.
Now take any solution R̂ then R̂ − R = βP(R̂ − R). So

||R̂ − R||∞ ≤ max
x∈X

β
∑

y

Pxy|R(y) − R(y)| ≤ β||R̂ − R||∞ .

22

0.2. MARKOV CHAINS WITH REWARDS NSW

which, since β < 1, only holds if R̂ = R. So the solution is unique.
Finally, suppose that R̃ is a positive function such that R̃(x) ≥

r(x) + βPR̃(x). Repeated substitution gives

R̃(x) ≥ r(x) + Ex

[
βR̃(X1)

]
≥ ... ≥ Ex

[T∑
t=0

βtr(Xt)
]

+ βT+1Ex

[
R̃(XT+1)

]
(5)

≥ Ex

[T∑
t=0

βtr(Xt)
]
−−−→
T→∞

R(x). (6)

�

Remark 17 (Rollout.). The idea of repeated substitutionthat we ap-
plied in (5-6) the final part of the proof is called "rollout". It is a com-
mon trick that we will often use.

Here repeated subsitution for R̃(x) showed that

R̃(x) ≥ r(x) + βEx[R̃(x̂)]

implies

R̃(x) ≥ Ex

[T∑
t=0

βtr(Xt)
]

+ βT+1Ex

[
R̃(XT+1)

]
≥ R(x) + o(1)

and, thus letting T→∞, we have

R̃(x) ≥ R(x)

for all x. (To have o(1) error as T → ∞ above, we require either that R̃
is bounded & |β| < 1, or that R̃ is positive.)

Markov Chains and Martingales. There is a close link between
Markov chains and martingales, which is often useful for analyzing
cumulative rewards.

Prop 18. Given a bounded function R : X → R, we define

Mt = R(X0) − βTR(XT) −
T−1∑
t=0

βtr(Xt).

If Mt, t ∈ Z+, is a martingale then

R(x) = Ex

 ∞∑
t=0

βtr(Xt)

 (7)

Conversely, if R(x) satisfies (7) then Mt, t ∈ Z+, is a martingale.

23

0.2. MARKOV CHAINS WITH REWARDS NSW

Proof. If Mt is a Martingale then

0 = Ex

[
Mt

]
= R(Xt) − E

[
βTR(XT)

]
− E

[T−1∑
t=0

βtr(Xt)
]

The term E
[
βTR(XT)

]
goes to zero, by the Dominated Convergence

Theorem. So

R(x) = Ex

[∞∑
t=0

βtr(Xt)
]
.

Conversely, if

R(x) = Ex

[∞∑
t=0

βtr(Xt)
]
,

then, by Prop 15, R(x) = r(x) + βEx[R(X1)]. Applying this gives

E
[
Mt+1 −Mt|Xt

]
= E

[
βtR(Xt) − βt+1R(Xt+1) − βtr(Xt)|Xt

]
= βt

[
R(Xt) − βEXt[R(Xt+1)] − r(Xt)

]
= 0 .

�

Equilibrium Distributions?

This section can be skipped on first reading but later we will dis-
cuss the limit behavior of a Markov chain as time gets large. Under
suitable assumptions, a Markov chain’s distribution will converge
to a distribution known as the stationary distribution or equilib-
rium distribution. Often this convergence is exponentially fast.

Equilibrium Distribution and Ergodicity. Let’s assume for now
our Markov chain has a finite number of states.3 If we ran the
Markov chain for infinite time, some states must be visited infinitely
often. So we might imagine there might be some limiting distribu-
tion over these states. E.g.

1
T

T∑
t=1

I[Xt = x] −−−→
T→∞

µ(x)

3Much of this analysis follows for a countable number of states and, with some
work, for a continuum of states.

24

0.2. MARKOV CHAINS WITH REWARDS NSW

or

P(XT = x) −−−→
T→∞

µ(x) . (8)

A Markov chain that has convergence to some distribution of this
type is called ergodic. The limiting distribution is called the equi-
librium distribution or stationary distribution.

Irreducibility and Ergodicity. There are some caveats: we may
want the limiting distribution µ to be unique and we want each
state to have positive probability in µ (i.e. we don’t include states
which we eventually stop visiting). This will not happen if we can
get stuck in some set of states. Specifically, there is a set of states
X1 for which there is zero probability of visiting some other state x.
In this case the Markov chain is called reducible.

Conversely if there is a positive probability of reaching each state
from every other state, then the Markov chain is called irreducible.
Notice that means if we visit some state x infinitely often, the (by ir-
reducibility) there is positive probability of visiting another state x′

from x and so we must visit x′ infinitely often too. Irreducibility also
implies that the Matrix P has a unique largest eigenvalue equal to
and of size 1.4 (We know there is an eigenvalue of size 1 since P1 = 1
where 1 is the vector of all ones) Irreducibility also implies unique-
ness of µ. 5

Rate of Convergence to Equilibrium. We now assume that P is an
irreducible transition matrix such that convergence to µ, (8), holds.
Notice that since P(Xt = x) = λPt and limt→∞ λPt = µ, we have that

µ = lim
T→∞
P(XT+1 = ·) = lim

T→∞
λPT+1 = lim

T→∞
λPTP = µP

We now briefly discuss how fast is this convergence is for the fol-
lowing metric:

||µ − λPt
||TV :=

1
2

∑
x∈X

|µ(x) − λPt(x)| .

The norm || · ||TV is called the total variation distance.
4This is the classical Perron-Frobenius Theorem.
5This can be proven with an argument that is somewhat elementary and sim-

ilar to roll out in MDP’s.

25

0.2. MARKOV CHAINS WITH REWARDS NSW

We study Pt. Since a probabilities are expressed in terms of pow-
ers Pt, we know (from linear algebra) that we can always express a
matrix in Jordan Normal Form

P = UJU−1

where U is an invertible matrix, and J is block diagonal for sets of
distinct eigenvalues. I.e. The non-zero entries are

J =


J1(α1)

J2(α2)
. . .

Jn(αn)

 where Ji(αi) =


αi 1

αi 1
.

αi 1
αi


Here 1 = α1 > α2 ≥ ... ≥ αn > −1 are the set of eigenvalues of our
irreducible transition matrix P.

We are interested in powers Pt for t large. Notice then that

Pt = UJtU

and Jt is the matrix J above where each block Ji(αi) is multiplied out
t times. A quick check gives that

[J(α)t]i j =

(
t

j − i

)
αt− j+i

for i ≥ j and [J(α)k]i j = 0 otherwise. Convergence is dominated by
the largest term in λPt

− µ which is given by J(α2)t since α2 is the
second largest eigenvalue. (Note, the largest has been cancelled out
by µ = Ptµ.) This gives the following

Theorem 1. For an irreducible finite time Markov chain

||λPt
− µ||TV ≤ CtN−1αt

2

where C is a constant, N = |X| and α2 is the 2nd largest eigenvalue of
P.

A more formal proof of this can be found in [40]. However, the
argument above should be sufficient for the reader to fill in the
relevant mathematical details.

26

0.2. MARKOV CHAINS WITH REWARDS NSW

Further Proofs.
We give a proof of Proposition 13 which we skipped earlier.

Proof of Prop 13. a) Using the Markov property (Markov) gives

P(X0 = x0,X1 = x1, ...,Xt = xt)
=P(Xt = xt|X0 = x0, ...,Xt−1 = xt−1)P(X0 = x0, ...,Xt−1 = xt−1)
=Pxt−1xtP(X0 = x0, ...,Xt−1 = xt−1)

Continuing inductively gives part a).
b)

P(Xt = x) =
∑

x0,...,xt−1

P(X0 = x0, ...,Xt−1 = xt−1,Xt = x)

=
∑

x0,...,xt−1

λx0Px0x1 ...Pxt−1x (Part a))

= [λPt]x

c)
Ex [r(Xt)] =

∑
y

Px(Xt = y)r(y) =
∑

y

[Pt]xyr(y) = Ptr(x) .

�

Markov Chain Exercises.
The following is an alternative formulation of the previous proposi-
tion.

Ex 19. Let ∂X be a subset of X and let T be the hitting time on ∂X i.e.
T = inf{t : Xt ∈ ∂X} and take f : ∂X→ R+ argue that

R(x) = Ex

∑
t<T

r(Xt) + f (XT)I [T < ∞]


solves the equation

R(x) = (PR)(x) + r(x), x < ∂X (9)
R(x) = f (x), x ∈ X. (10)

27

0.2. MARKOV CHAINS WITH REWARDS NSW

There is a close connection between Markov chains and Mar-
tingales that we will want to use later when considering Markov
Decision Processes.

Ex 20 (Markov Chains and Martingale Problems). Show that a se-
quence of random variables X = (Xt : t ∈ Z+) is a Markov chain if and
only if, for all bounded functions f : X → R, the process

M f
t = f (Xt) − f (X0) −

t−1∑
τ=0

(P − I) f (Xτ)

is a Martingale with respect to the natural filtration of X. Here for any
matrix, say Q, we define

Q f (x) :=
∑
y∈X

Qxy f (y).

References

This section is intended as a brief introductory recap of Markov
chains. A much fuller explanation and introduction is provided in
standard texts e.g. Norris [36], Bremaud [12], or Levin & Peres
[31]. The analysis of rewards and Markov processes is particularly
studied by Doob [17].

28

0.3. MARKOV DECISION PROCESSES NSW

0.3 Markov Decision Processes

• Markov Decision Process (definition).

• Bellman’s Equation.

Markov decision processes are the randomized equivalent of a
dynamic program. Let’s first consider how to randomize the tree
example introduced in Section 0.1.

A Random Example

Below is a tree with a root node and four leaf nodes colored grey.
At the route node you choose to go left or right. This incurs costs
4 and 2, respectively. Further, after making this decision there is
a probability for reaching a leaf node. Namely, after going left the
probabilities are 0.5 & 0.75, and for turning right, the probabilities
are 0.25 & 0.75. For each leaf node there is there is a cost, namely,
2, 3, 6, and 1.

Given you only know the probabilities (and not which outcome hap-
pens when you choose left or right), you’d want to take the decision
with lowest expected cost. The expected cost for left is 4 + 0.5 × 2 +
0.5 × 3 = 5.5 and for right is 2 + 0.25 × 6 + 0.75 × 1 = 4.25. So go right.

We can then combine these together to make a sequence of such
calculations working from the leaves of the tree to the root. Just
like we did for our introductory example for dynamic programming.
See below.

29

0.3. MARKOV DECISION PROCESSES NSW

We now replace the numbers above with symbols. At the route
node you can choose the action to go left or right. These, respective,
decisions incur costs of lleft and lright. After choosing left, you will
move to state A with probability pleft,A or to state B with probability
pleft,B and similarly choosing right states C & D can be reached with
probabilities pleft,C & pleft,D. After reaching node A (resp. B,C,D) the
total expected cost thereafter is LA (resp. LB, LC, LD).

The cost from choosing “left" is :

lleft + pleft,ALA + pleft,BLB = lleft + Eleft[Lleft]

and the cost for choosing “right" is:

lright + pright,ALA + pright,BLB = lright + Eright[Lright].

The optimal cost is the minimum of these two is

LR = min
a∈{left,right}

{
la + Ea

[
LXa

]}
.

where here the random variable Xa denotes the state in {A,B,C,D}
reached after each action is taken. Notice how we abstracted away
the future behaviour after arriving at A, B, C, D. Into a single cost
for each state: LA, LB, LC, LD. And we can propagate this back to
get the costs at the route state R. I.e. We can essentially apply the
same principle as dynamic programming here.

30

0.3. MARKOV DECISION PROCESSES NSW

Definitions
A Markov Decision Process (MDP) is a Dynamic Program where the
state evolves in a random (Markovian) way.

Like with a dynamic program, we consider discrete times t =
0, 1, ...,T, states x ∈ X, actions a ∈ A and rewards r(x, a). A policy, π,
at time t when in state x choses an action

πt(x) ∈ A.

I.e. a policy is a function π : X × {0, 1...,T} → A. We let PT be the set
of policies over T time steps, and we let PT(x) be the set of policies
over T time steps started at state X0 = x. 6

The plant equation is slightly different. Like with aMarkov chain,
the state evolves as a random function, but now the action also in-
fluences the next state. Specifically

Xt+1 = f (Xt,At; Ut)

where Xt is the state at time t and action At is the action at time t
and where Ut is an independent random variable. This is called the
Plant Equation. (Note, under policy π, At = πt(Xt)).

A policy, a plant equation, and the resulting sequence of states
and rewards describe a Markov Decision Process.

Remark 21 (Some further notation).
• We will usually suppress dependence on Ut, and instead write:

Xt+1 = f (Xt,At) .

We let the random variable x̂ be the next state (after state x and action
a):

x̂ = f (x, a) .

• We let
Pa

xy := P(y|x, a) := P(X1 = y|X0 = x,A0 = a)

which the probability of next moving to state y, when in state x and
taking action a.
• We will often suppress the dependence of Xt and write πt = πt(Xt).
• We use the notation

Ex,a[G(x̂)] = E[G(f (x, a; U))] =
∑

y

Pa
xyG(y)

6We could let a policy depend on past states and decisions. See Remark 24.

31

0.3. MARKOV DECISION PROCESSES NSW

and

Ext,at[G(Xt+1)] := E[G(Xt+1)|Xt = xt,At = at]

= E[G(f (xt, at; U))] =
∑

y

Pat
xt,yG(y)

(Notice in both equalities above, the expectation depends on only one
independent random variable, U.)

Our objective is to find a policy that optimizes the expected reward.

Def 22 (Markov Decision Problem). Given initial state x0, a Markov
Decision Problem is the following optimization

VT(x0) =Maximize RT(x0, π) := E

T−1∑
t=0

r(Xt, πt) + r(XT)

 (MDP)

over π ∈ PT(x0).

We often call VT(x) to value function of the MDP.

We want to derive the Bellman equation for a Markov decision
process just like we did for dynamic programming. The key idea
there was that we could separate the current decision wemade from
future decisions. The same holds here and the following lemma
helps with this:

Lemma 2. a) The set of policies satisfies Pt(x) = A×Pt−1,

max
π∈Pt(x)

f (π) = max
a∈A

max
π̂∈Pt−1

f (a, π̂)

for any f : Pt → R and π̂ = (π1, ..., πT).
b) For policy π, the states Xt are a Markov chain7. So if π0(x) = a then

Ex,a[Y] = Ex,a[EX1,π1[Y]]

for any random variable Y depending on states and decision made
after time t = 0.
c) If X0 = x and π0(x) = a

t−1∑
s=0

r(Xs, πs) + r(Xt) = r(x, a) +

t−1∑
s=1

r(Xs, πs) + r(Xt)

7Note that this Markov chain may note be time homogenous but the Markov
property does hold.

32

0.3. MARKOV DECISION PROCESSES NSW

The proof is straight forward (and part c is trivial) so we postpone
it until the end of the section. The main thing is we can sepa-
rate present states and decisions from the future when maximizing,
when taking expectations and when summing.

The next result shows that the Bellman equation follows essen-
tially as before but now we have to take account for the expected
value of the next state.

Thrm 23 (Bellman Equation). The optimal value function Vt(x) sat-
isfies V0(x) = r(x) and

Vt(x) = max
a∈A

{
r(x, a) + Ex,a [Vt−1(x̂)]

}
for t = 1, ...,T . (Bell)

Moreover, in state x at time t, an optimal policy π? must chose

π?t (x) ∈ argmax
a∈A

{
r(x, a) + Ex,a [Vt−1(x̂)]

}
Above, the equation (Bell) is the Bellman equation for a finite time
Markov Decision Process.

Proof. For π ∈ Pt(x) we let π = (a, π̂) where π0(x) = a and (π1, ..., πt) =
π̂0, ..., π̂t−1). Also we define (X̂1, ..., X̂t−1) = (X2, ...,Xt) and X̂0 = X1 = x̂.

Applying Lemma 2 parts a) and b) gives

Vt(x) = max
π∈Pt
Ex,π0

 t−1∑
s=0

r(Xs, πs) + r(Xt)


= max

a∈A
max
π̂∈Pt−1

Ex,a

[
EX1,π1

[
r(x, a) +

t−1∑
s=1

r(Xs, πs) + r(XT)
]]

= max
a∈A

r(x, a) + Ex, a

[
max
π̂∈Pt−1

EX1,π1

[t−1∑
s=1

r(Xs, πs) + r(X̂t−1)
]]

= max
a∈A

r(x, a) + Ex, a

[
max
π̂∈Pt−1

Ex̂,π̂0

[t−2∑
s=0

r(X̂s, πs) + r(X̂t)
]

︸ ︷︷ ︸
=Vt−1(x̂)

]
.

In the second equality, we apply Lemma 2 separating the present
and future variables in the maximization, the expectation and the
sum. In the third equality, we move, as far as possible, terms for the
present to the left and terms for the future to the right. The fourth
equality, just changes notation to make it clear that the term in
brackets is Vt−1(x̂). �

33

0.3. MARKOV DECISION PROCESSES NSW

Rmk 24. It is probably worth remarking that we could have let the
policy choice depend on past variables and decisions. I.e. the ac-
tion we choose at time t, πt, could depend on X0,A0, ...,Xt−1,At−1, in
addition to Xt. However, by the Markov property these extra terms do
not to gain us any additional information when optimizing the future
rewards. It only lengthens the proof as given above. See Ex 29.

Further Proofs.
Proof of Lemma 2. a) This is really just the definition: for π ∈ Pt(x),

π = (π0(x), π1, ..., πt−1) = (a, π̂)

for a ∈ A and π̂ ∈ Pt−1.
b) Notice if π is fixed then Xt+1 = f (Xt, πt(Xt); Ut). Thus by Proposition
14, (Xt : t = 0, ...,T) is a Markov chain (albeit not necessarily a time
homogeneous one). Applying the Markov property, we have

Ex,π0[Y] = Ex,π0[E[Y|X1,A1 = π1(X1),X0 = x,A0 = π0(x)]]
= Ex,π0[E[Y|X1,A1 = π1(X1)]] (Markov Property)
= Ex,π0[EX1,π1[Y]] .

c) This part is trivial. �

34

0.3. MARKOV DECISION PROCESSES NSW

MDP Examples
Ex 25. You need to sell a car. At every time t = 0, ...,T − 1, you set a
price pt and a customer then views the car. The probability that the
customer buys a car at price p is D(p). If the car isn’t sold be time T
then it is sold for fixed price VT, VT < 1. Maximize the reward from
selling the car and find the recursion for the optimal reward when
D(p) = (1 − p)+.

Ex 26 (Call Option). You own a call option with strike price p. Here
you can buy a share at price p making profit Xt − p where xt is the
price of the share at time t. The share must be exercised by time T.
The price of stock Xt satisfies

Xt+1 = Xt + εt

for εt IIDRVwith finite expectation. Show that there exists a decresing
sequence {at}0≤t≤T such that it is optimal to exercise whenever Xs ≥ as

occurs.

Ex 27. You own an expensive fish. Each day you are offered a price
for the fish according to a distribution density f (x). You make the
accept or reject this offer. With probability 1−p the fish dies that day.
Find the policy that maximizes the profit from selling fish.

Ex 28. Indiana Jones is trapped in a room in a temple. There are n
passages that he can try and escape from. If he attempts to escape
from passage i ∈ {1, ...,n} then either: he esacapes with probability
pp; he dies with probability qi; or with probability ri = 1 − pi − qi the
passage is a deadend and he returns to the room which he started
from. Determine the order of passages which Indiana Jones must try
in order to maximize his probability of escape.

Ex 29. We develope slightly the point made in Remark 24.
a) Show that for aMDPwith states and actions given by X1,A1, ...,AT−1,XT

that

E [r(Xt,At) + V(Xt+1)|Xt,At, , ...,X0,A0] = E [r(Xt,At) + V(Xt+1)|Xt,At]

for any function r(x, a) and V(x).
b) Show that for any optimal policy for the MDP whose current action
depends on previous states and actions, there is also an policy that
depends only on the current state and action.
[Hint: inductively apply part a) in the proof of the Bellman equation.]
c) Reread the principle of optimality.

35

0.3. MARKOV DECISION PROCESSES NSW

References

Markov decision processes were studied as the natural probabilistic
analog of dynamic programs. An early text on MDPs is Howard [24].
Standard texts on dynamic programming [6] or on Markov chains
[36] cover MDPs. A good account of MDPs is Puterman [37].

36

0.4. INFINITE TIME HORIZON NSW

0.4 Infinite Time Horizon

• Discounted Programming, Positive Programming, Negative Pro-
gramming, Average Programming.

• Conditions for the Optimality of the Bellman Equation.

• Martingales and Optimality; Occupancy Measure.

Thus far we have considered finite time Markov decision processes.
We now want to solve MDPs of the form

V(x) = maximize
π∈P

R(x, π) := Ex0

 ∞∑
t=0

βtr(Xt, πt)

 .
In the above equation the term β is called the discount factor.

We can generalize Bellman’s equation to infinite time. A correct
guess at the form of the equation would, for instance, be

V(x) = max
a∈A

{
r(x, a) + βEx,a [V(x̂)]

}
, x ∈ X .

Previously we solvedMarkov Decisions Processes inductively with
Bellman’s equation. In infinite time, we can not directly apply in-
duction; however, we see that Bellman’s equation still holds and we
can use this to solve our MDP.

Discounted Programming
For now we will focus on the case of discounted programming:

Def 30 (Discounted Program). A discounted program is a MDP with
bounded rewards and a discount factor that is smaller than 1

max
x∈X,a∈A

|r(x, a)| < ∞ and β ∈ (0, 1) .

We will cover other cases where β = 1 later. At this point it is
useful define the concept of a Q-factor. A Q-factor of a policy π is
the reward that arises when we take action a from state x and then
follow policy π.

37

0.4. INFINITE TIME HORIZON NSW

Def 31 (Q-Factor). The Q-factor of reward function R(·) is the value
for taking action a in state x and then at the next step receiving reward
R(X̂):

QR(x, a) = Ex,a[r(x, a) + βR(x̂)] .

Similarly the Q-factor for a policy π, denoted by Qπ(x, a), is given by
the above expression with R(x) = R(x, π). The Q-factor of the optimal
policy is given by

Q∗(x, a) = max
π

Qπ(x, a).

The following result shows that if we have solved the Bellman
equation then the solution and its associated policy is optimal.

Thrm 32. If we find a function R(x) that solves the Bellman equation:

R(x) = max
a∈A

{
r(x, a) + βEx,a [R(x̂)]

}
then R(x) = V(x), where V(x) is the optimal value function. Moreover,
if we take

π(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a [R(x̂)]

}
, x ∈ X

then π is optimal.

Proof. We will first show that V solves the Bellman equation [with
inequality ≤ then ≥]. Then we will argue that its solution is unique
with a contraction argument. Then we will argue that a stationary
policy associated with the Bellman equation is optimal by applying
Proposition 15.

We know that Rt(x, π) = r(x, π0)+βE[Rt−1(x̂, π̂)], where π̂ is the policy
π take from time 1 onwards. We know that Rt(x, π)→ R(x, π) as t→∞
by bounded convergence theorem. Letting t→∞ on both sides gives
that

R(x, π) = r(x, π0) + βEx,π0 [R(x̂, π̂)]
≤ r(x, π0) + βEx,π0 [V(x̂)] .

For the inequality, above, we maximize R(x̂, π̂) over π̂. Now maximiz-
ing the left hand side over π gives

V(x) ≤ sup
π0∈A

{
r(x, π0) + βEx,π0 [V(x̂)]

}
.

38

0.4. INFINITE TIME HORIZON NSW

At this point we have that the Bellman equation holds but with
an inequality. We need to prove the inequality in the other direction.
For this, we let πε be the policy that chooses action a and then, from
the next state X̂, follows a policy π̂ε which satisfies

R(X̂, π̂ε) ≥ V(π̂) − ε.

We then have that

V(x) ≥ R(x, πε) = r(x, a) + βEx,a [R(x̂, π̂ε)]
≥ r(x, a) + βEx,a [V(x̂)] − εβ

The first inequality holds by the sub-optimality of πε and the second
holds by the assumption on π̂ε. Maximizing over a ∈ A, and taking
ε→ 0 gives

V(x) ≥ max
a∈A

{
r(x, a) + βEx,a [V(x̂)]

}
.

Thus we now have that

V(x) = max
a∈A

{
r(x, a) + βEx,a [V(x̂)]

}
.

So at this point we know that the optimal value function satisfies
the Bellman equation. For the next part of the result we need to
show that the solution to the Bellman equation is unique.

Suppose that R(x) is another solution to the Bellman equation.
From the definition of a Q-factor and the Bellman recursion, R(x) =
maxa QR(x, a) and V(x) = maxa QV(x, a). Thus note that

QV(x, a) −QR(x, a) = βE[V(X̂) − R(X̂)] = βE[max
a′

QV(X̂, a) −max
a′

QR(X̂, a′)]

Thus

||QV −QR||∞ ≤ βmax
x̂
|max

a′
QV(x̂, a′) −max

a′
QR(x̂, a′)| ≤ β||QV −QR||∞ . (11)

(In the last equality above, we use the fact that

|max
a′

QV(x, a′) −max
a′

QR(x, a′)| ≤ max
a
|QV(x, a) −QR(x, a)|.

This is an elementary result which we prove in Lemma 33 after we
complete this proof.) Now since 0 < β < 1 the only solution to the
inequality, (11), is QV = QR and thus

R(x) = max
a

QR(x, a) = max
a

QV(x, a) = V(x) .

39

0.4. INFINITE TIME HORIZON NSW

So solutions to the Bellman equation are unique for discounted pro-
gramming. Finally we must show that if we can find a policy that
solves the Bellman equation, then it is optimal.

If we find a function R(x) and a function π(x) such that

R(x) = max
a∈A

{
r(x, a) + βEx,a

[
R(X̂)

]}
, π(x) ∈ argmax

a∈A

{
r(x, a) + βEx,a

[
R(X̂)

]}
then note that the MDP induced by π is a Markov chain (with tran-
sition matrix Pπ(x)

xy). Both R(x, π) and R(x) solve the equation R̃(x) =

r(x, π(x)) + βEx,π(x)[R̃(X̂)]. By Prop 15 this solution is unique and so,
R(x) = R(x, π). �

For the above proof we required the following technical lemma.

Lem 33. For any two real valued function f and g

|max
a

f (a) −max
a

g(a)| ≤ max
a
| f (a) − g(a)|

Proof. Assume wlog that maxa f (a) ≥ maxa g(a) then

f (a) − g(a) ≥ f (a) −max
a′

g(a′)

therefore
| f (a) − g(a)| ≥ f (a) −max

a′
g(a′)

Now maximize both sides over a to complete the proof. �

It is worth collating together a similar result for Q-factors. Given
the facts accrued about the value function and Bellman’s equation.
The following Proposition should not be too great a surprise (and
can be skipped on first reading).

Prop 34. a) Stationary Q-factors satisfy the recursion

Qπ(x, a) = r(x, a) + βEx,a[Qπ(x̂, π(x̂))] .

b) Bellman’s Equation can be re-expressed in terms of Q-factors as
follows

Q∗(x, a) = r(x, a) + βEx,a

[
max

â
Q∗(x̂, â)

]
.

The optimal value function satisfies

V(x) = max
a∈A

Q∗(x, a).

40

0.4. INFINITE TIME HORIZON NSW

c) The operation

Fx,a(Q) = Ex,a[r(x, a) + βQπ(X̂, π(X̂))]

is a contraction with respect to the supremum norm, that is,

||F (Q1) − F (Q2)||∞ ≤ ||Q1 −Q2||∞ .

Proof. a) We can think of extending the state space of our MDP to
include states X0 = {(x, a) : x ∈ X, a ∈ A} as well as X. In this new
MDP we can assume that initially the MDP starts in state (x, a) then
moves to the state X̂ ∈ X according to the transition probabilities
Pa

xx̂. There after it remains in X moving according to policy π. Thus
by Prop 15

Qπ(x, a) = Ex,a[r(x, a) + βR(X̂, π)]

where R(x, π) is the reward function of policy π . Further since
Qπ(x, a) is the value from taking a instead of following policy π to
should also be clear that

Qπ(x, π) = Ex,π(x)[r(x, π(x)) + βR(X̂, π)] = R(x, π)

Thus, as required,

Qπ(x, a) = Ex,a[r(x, a) + βQπ(X̂, π(X̂))] .

b) Further it should be clear that the optimal value function for the
extended MDP discussed has a Bellman equation of the form

Q∗(x, a) = Ex,a[r(x, a) + βV(X̂)]

V(x) = max
a∈A
Ex,a[r(x, a) + βV(X̂)]

Comparing the first equation above with the second, it should be
clear that V(x) = maxa Q∗(x, a) and substituting this back into the
first equation gives as required

Q∗(x, a) = Ex,a[r(x, a) + βmax
â∈A

Q∗(X̂, â))] .

c) The proof of this part is already embedded in the previous Theo-
rem. Note that

Fx,a(Q1) − Fx,a(Q2) = βE[max
a′

QV(X̂, a) −max
a′

QR(X̂, a′)]

41

0.4. INFINITE TIME HORIZON NSW

Thus

||F (Q1) − F (Q2)||∞ = max
x,a

∣∣∣∣βEx,a

[
max

a′
Q1(x̂, a′)

]
− βEx,a

[
max

a′
Q2(x̂, a′)

]∣∣∣∣
≤ βmax

x̂
|max

a
Q1(x̂, a) −max

a′
Q2(x̂, a′)|

≤ β||Q1 −Q2||∞ ,

The last inequality follows by Lemma 33, as required. �

The following shows that if we can get a good approximation of
the value function or the Q-function of a discounted MDP then we
can construct a good policy from it. This is important as we will
construct algorithms to approximate the value and Q-functions.

Proposition 1. For a discounted MDP with optimal value function V
and optimal Q-function Q,
a) If we can find R such that

||R − V||∞ ≤ ε

and we define a policy π such that

π(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a[R(x̂)]

}
,

then

Rπ(x) ≥ V(x) −
βε

1 − β

b) If we can find Q′ such that

||Q′ −Q|| ≤ ε

and we define a policy π such that

π(x) ∈ argmax
a∈A

Q′(x, a)

then

Rπ(x) ≥ V(x) −
2β

1 − β
.

42

0.4. INFINITE TIME HORIZON NSW

Proof. a) Since V satisfies the Bellman equation

V(x) = max
a

r(x, a) + βEx,a [V(x̂)]

≤ max
a

r(x, a) + εβ + βEx,a [R(x̂)]

= r(x, π(x)) + εβ + βEx,π(x) [R(x̂)]
≤ r(x, π(x)) + 2εβ + βEx,π(x) [V(x̂)]

Applying Rollout (see Remark 17) we have

V(x) ≤ E

∑
t

βt(r(x̂t, πt) + 2εβ)

 = Rπ(x) +
2εβ

1 − β
.

as required.
b) Similar to part a)

Q(x, a) = r(x, a) + βEx,a

[
max

a′
Q(x̂, a′)

]
≤ r(x, a) + βε + βEx,a

[
max

a′
Q′(x̂, a′)

]
= r(x, a) + βε + βEx,a [Q′(x̂, π(x̂))]
≤ r(x, a) + 2βε + βEx,a [Q(x̂, π(x̂))]

Again applying rollout (or equilvalently the expansion given in Propo-
sition 4), we see that

Q(x, a) ≤ Ex,a

∑
t

βt(r(xt, πt) + 2βε)

 = Rπ(x) +
2βε

1 − β

as required. �

Remark 35. It is worth noting that once we get within the error of the
optimal solution then we also have exactly the optimal policy. E.g. If
Q is the optimal Q-factor and ∆ = minx,a{V(x)−Q(x, a) : Q(x, a) , V(x)} is
the gap between a sub-optimal action and the optimal value action,
then so long aswe have an approximation Q′ such that ||Q−Q′||∞ < ∆/2
then Q′ must describe the optimal policy. Of course, when the set of
actions is continuous, then it is a distinct possibility that ∆ = 0 and
so we need to revert to the above proposition.

43

0.4. INFINITE TIME HORIZON NSW

Positive Programming?

We now consider the case where all rewards are positive and the
discount factor β can be set equal to 1. This is called Positive Pro-
gramming. Notice since β = 1 is possible, we can no longer use the
nice contraction properties that we had for a discounted program.
Notice that the optimization of interest is now

V(x) = max
π

lim
T→∞
E

 T∑
t=0

r(Xt, πt)

 .
The since the rewards are positive the sum is always increase in T
and so we are effectively maximizing over π and T. For this reason,
we can recover some nice properties. Also the proof given below
leads us to an algorithm called Value Iteration.

The following result holds for positive programming.

Thrm 36. Consider a positive program the optimal value function
V(x) is the minimal non-negative solution to the Bellman equation

R(x) = max
a∈A

{
r(x, a) + βEx,a [R(x̂)]

}
.

Thus if we find a policy π whose reward function R(x, π) satisfies the
Bellman equation, then it is optimal.

Proof. First we show that V is a solution to the Bellman equation.
Suppose that VT(x) is the optimal value function for the positive
program with T time steps. (I.e. we set all rewards equal to zero
from time T onwards.) By Thrm 23, Bellman’s equation holds

VT+1(x) = max
a∈A

{
r(x, a) + βEx,a

[
VT(X̂)

] }
,

with V0(x) = 0. Note VT(x) is increasing in T, since rewards are pos-
itive. Thus, the following limit is well defined V∞(x) := supT VT(x) .
Further note that

V∞(x) = sup
T

max
a∈A

{
r(x, a) + βEx,a

[
VT(X̂)

] }
= max

a∈A

{
r(x, a) + βEx,a

[
sup

T
VT(X̂)

] }
= max

a∈A

{
r(x, a) + βEx,a

[
V∞(X̂)

] }
44

0.4. INFINITE TIME HORIZON NSW

(Above, in the 2nd equality, we swap the sup and the max and use
Monotone Convergence Theorem to take the limit inside the expec-
tation.) Thus V∞(x) satisfies Bellman’s equation.

Note that V(x) ≥ VT(x), since the optimal value function for the
infinite time horizon experiences positive rewards after time T. Thus

V(x) ≥ V∞(x) := lim
T→∞

VT(x).

Further, for any policy π,

VT(x) ≥ RT(x, π) .

Now take limits V∞(x) ≥ R(x, π). Now maximize over π to see that
V∞(x) ≥ V(x). So V∞(x) equals the optimal value function V(x).

Note that if R(x) is any other positive solution to the Bellman
Equation, then R(x) ≥ V0(x) = 0. And if R(x) ≥ VT(x) then

R(x) = max
a∈A

{
r(x, a) + βEx,a [R(x̂)]

}
≥ max

a∈A

{
r(x, a) + βEx,a [VT(x̂)]

}
= VT+1(x)

Thus R(x) ≥ limT→∞VT(x) = V(x). So we see that the value function
is the minimal positive solution to the Bellman equation.

Finally, if a policy π is such that R(x, π) solves the Bellman equa-
tion. Then clearly we know that R(x, π) ≤ V(x). But then since
R(x, π) is smaller than the minimal non-negative solution to the Bell-
man equation, and it solves the Bellman equation, it must be that
R(x, π) = V(x) and so the policy is optimal. �

Negative Programming?

We now consider case were all rewards are negative and the dis-
count factor β can be set equal to 1. This could also be consider
to be the case where you minimize positive costs. This is called
Negative Programming.

In this section, we phrase this as a minimization problem:

L(x) = maximize
π∈P

C(x, π) := Ex0

 ∞∑
t=0

βtc(Xt, πt)

 ,
for c(x, a) ≥ 0.

We consider stationary policies, which we recall as follows:

45

0.4. INFINITE TIME HORIZON NSW

Def 37. A policy π is called a stationary policy if its action only de-
pends on the current state (and is non-random and does not depend
on time).

The analogous result to Thrm 36 for Negative programming is weaker.

Thrm 38. Consider a negative program, minimizing positive costs.
For the minimal non-negative solution to the Bellman equation

L(x) = min
a∈A

{
c(x, a) + βEx,a [L(x̂)]

}
, (12)

any stationary policy π that solves the Bellman equation:

π(x) ∈ argmin
a∈A

{
c(x, a) + βEx,a [L(x̂)]

}
is optimal.

So the Bellman equation is still correct, but as the above result
suggests, simply finding a solution to the Bellman equation is not
sufficient. We need to find the optimal solution first and then we
need to solve with a stationary policy.

Proof. The first part of the argument is identical proof to Thrm 36:
by considering the limit of value function the finite time horizon
MDP, LT(x)), it can be seen that its limit satisfies the Bellman Equa-
tion

L(x) = min
a∈A

{
l(x, a) + βEx,a [L(x̂)]

}
,

and that lim LT(x) = L(x) ≤ C(x) for any other solution to the Bellman
equation. (See the proof of Thrm 36 for more detail.)

Now for a stationary policy, π, that minimizes the Bellman equa-
tion

L(x) = min
a∈A

{
c(x, a) + βEx,a[L(X1)]

}
= c(x, π(x)) + βEx,π(x) [L(X1)]

= c(X0, π(X0)) + βEX0,π(X0)

[
c(X1, π(X1)) + βEX1,π(X1) [L(X2)]

]
= C1(x, π) + β2Ex,π[L(X2)]
...

= CT(x, π) + βTEx,π[L(XT+1)] .

46

0.4. INFINITE TIME HORIZON NSW

Thus

L(x) = CT(x, π) + βTEx,π[L(XT+1)] ≥ CT(x, π) M.C.T.
−−−−→
T→∞

C(x, π) .

So the policy has lower cost, and thus is optimal. �

Average Programming?

We now consider a slightly different approach to dynamic program-
ming without a discount factor. The approach on positive program-
ming and negative programming are applicable to the case where
there are a small number of large rewards. Like optimal stopping
problems, which we discuss in Section 0.6. However, if there are
large numbers of small costs (or rewards) accumulated over time
then, without discounting, the total sum of costs will be infinite.
So in this case it is better to look at the long run average cost that
we get from our policy.

Suppose that for finite-time cost function

CT(x0, π) = E
[T−1∑

t=0

c(xt, πt)
]
.

We look at the limit of the average cost

C̄(π) = lim
T→∞

CT(x0, π)
T

,

if such a limit exists, and we attempt to find theminimal such policy.
We consider the case of minimizing costs. However, the analo-

gous result for maximizing rewards holds.

Deriving a Bellman Equation. Before proving a formal result, we
show how to heuristically get a Bellman equation in this setting.

We could think of the cost function for the optimal policy CT(x, π)
as consisting of three components:

CT(x, π) ≈ T · L + κ(x) + ε(x,T) (13)

where

• L is the optimal long run average cost.

47

0.4. INFINITE TIME HORIZON NSW

• κ(x) represents the short run cost from starting in state x.

• ε(x,T) is an error term that goes to zero as T→∞.

Here if we fix a stationary policy π then the resulting process is a
Markov chain. Let’s assume that this chain is positive recurrent.
Then the process will converge to an equilibrium with an average
cost L. The initial condition will be forgotten over time but will have
some initial impact κ(x).

Now let’s consider the impact of the approximation (13) on the
finite time Bellman equation:

LT+1(x) = min
a

{
c(x, a) + Ex,a[LT(x̂)]

}
.

After substituting (13), we get

(T + 1) · L + κ(x) = min
a

{
c(x, a) + Ex,a[T · L + κ(x̂)]

}
So rearranging gives

L = min
a∈A

{
c(x, a) + Ex,a [κ(x̂)] − κ(x)

}
The above expression is the Bellman equation for minimizing aver-
age cost in a Markov decision process. Note we can always add a
constant to κ(x) in the above theorem. So it is worth specifying that
κ(x0) = 0 for some arbitrary state x0.

Main Result. The following result shows that if we can solve the
Bellman equation and find a policy associated with the solution,
then we have an optimal solution.

Thrm 39. If we can find a constant L and a bounded function κ(x)
such that for all x ∈ X

L = min
a∈A

{
c(x, a) + Ex,a [κ(x̂)] − κ(x)

}
(AvgBell)

and if given L and κ(x) we can chose a policy such that

π(x) ∈ argmin
a∈A

c(x, a) + Ex,a[κ(x̂)] − κ(x)

then L is the mimimum average reward and π is the optimal policy.

48

0.4. INFINITE TIME HORIZON NSW

Proof. To prove the result we make the following claim:
Claim: If L′ and κ′(x) bounded functions are such that

L′ ≤ min
x∈X

min
x∈A

{
c(x, a) + Ex,a[κ′(x̂)] − κ′(x)

}
then

L′ ≤ lim inf
T→∞

CT(x, π′)
T

for all policies π′.
Proof of claim: Let

Mt = κ′(Xt) +

t−1∑
τ=0

{c(Xτ, π
′

τ) − L′} .

Our assumption on L′, Mt is a sub-Martingale:

E[Mt+1 −Mt|Xt = x, π′t = a] = Ex,a[κ′(x̂)] − κ′(x) + c(x, a) − L′ ≥ 0 .

Thus
κ′(x) = E[M0] ≤ E[MT] = E[κ′(XT)] − L′T + CT(x, π′)

and so
lim inf

T→∞

CT(x, π′)
T

≥ L′.

X claim proved.
Clearly L, κ and π satisfy the conditions of our claim. Also, notice

for L, κ and π, the process Mt, as defined above, is a Martingale. So

κ(x) = E[M0] = E[MT] = E[κ(XT)] − LT + CT(x,Π)

and so
lim
T→∞

CT(x, π̃)
T

= L ≤ lim inf
T→∞

CT(x, π′)
T

for all policies π′. So π is optimal. �

Remark 40. The analogous result holds, with an identical proof for
maximizing. Here the Bellman equation is

V = max
a∈A

{
r(x, a) + Ex,a

[
ρ(x̂)

]
− ρ(x)

}
.

Since we established that minimizing (negative programming) is more
difficult that maximizing (positive programming), we proved the result
for minimizing average costs.

49

0.4. INFINITE TIME HORIZON NSW

A Martingale Principle of Optimal Control.
We give a Martingale condition for optimal control. This result is
analogous to Prop 18 which applies to Markov chains.

Prop 41 (A Martingale Principle of Optimal Control.). Consider dis-
counted program. Suppose for a bounded function R : X → R we
define a process (Mt : t ∈ Z+) whose increments, ∆M(Xt) := Mt+1 −Mt,
are given by

∆M(x) = R(x) − βR(x̂) − r(x, π(x))

If Mt is a submartingale for all policies π′ and, for some π, Mt is a
martingale, then π is the optimal policy and R(x) = R(x, π).

Proof. Mt is a submartingale [resp. martingale] iff

Mβ
t :=

t∑
s=0

βs∆M(Xs)

is a submartingale [resp. martingale]. Taking expectations,

0 ≤ Ex[Mβ
t] = Ex

[
R(x) − βt+1R(Xt+1) −

t∑
s=0

βsr(Xs, π
′(Xs))

]
Rearranging and letting t→∞ gives, for π′,

R(x) ≥ E
[∞∑

s=0

βsr(Xs, π
′(Xs))

]
,

where the inequality above holds with equality if Mβ
t is a martingale

for some π . Thus we see that R(x) ≥ V(x), where V(x) is the value
function for the MDP and, for the martingale policy, R(x) = V(x) =
R(x, π). �

Occupancy Measure
We can construct a perspective on Markov decision processes based
on how often it takes and action and how often it visits each state.

50

0.4. INFINITE TIME HORIZON NSW

We consider a discounted program. Here we can rewrite the re-
ward function for any policy π as follows

R(x0, π) = Ex0

 ∞∑
t=0

βtr(Xt, πt)


=

∑
x∈X

∑
a∈A

∞∑
t=0

βtEx0

[
I [Xt = x, πt = a] r(x, a)

]
=

∑
x,a

r(x, a)
∑

t

βtPx0(Xt = x, πt = a)︸ ︷︷ ︸
ηπ(x,a)

=
∑
x,a

ηπ(x, a)r(x, a) (14)

Def 42 (Occupancy Measure). The term ηπ(x, a) is the discounted oc-
cupancy measure:

ηπ(x, a) :=
∞∑

t=0

βtPx0(Xt = x, πt = a) .

It counts how much time we spend in state x taking action a.

We can use this to show that for any policy π (where the decision
at time depends on the time and the past states and actions) can
be replaced by a simpler stationary policy. (Recall from earlier that
a stationary policy is a policy where the probability of choosing an
action only depends on the current state.)

Prop 43. For any policy π, there exists a stationary policy π′ such
that

ηπ′ ≡ ηπ

Proof. Take ηπ(x, a) and define ηπ(x) =
∑

a ηπ(x, a), then define π′ such
that

π′(a|x) =
ηπ(x, a)
ηπ(x)

,

(if ηπ(x) = 0 then we can take π′(a|x) equal to some arbitrary policy
at a.)

Note that the stationary policy π′ defines a Markov chain with
transition matrix given by

P′(x̂|x) =
∑

a

P(x̂|x, a)π′(a|x) =
∑

a

P(x̂|x, a)
ηπ(x, a)
ηπ(x)

.

51

0.4. INFINITE TIME HORIZON NSW

So notice that

ηπ(x) =

∞∑
t=0

Px0(Xt = x)

= I[x0 = x] + β
∞∑

t=0

βtPx0(Xt+1 = x)

= I[x0 = x] + β
∞∑

t=0

βt
∑
x′,a

Px0(Xt = x′, πt = a)P(x|x, a)

= I[x0 = x] + β
∑
x′,a

P(x|x′, a)β
∞∑

t=0

βtPx0(Xt = x′, πt = a)

= I[x0 = x] + β
∑
x′,a

P(x|x′, a)ηπ(x′, a)

= I[x0 = x] + β
∑

x′
P′(x|x′)ηπ(x′)

where in the third equality above we apply the Markov property, and
in the final equality, we apply the definition of P′(x|x′) given above.
It follows by an identical argument that the policy π′ and ηπ′ satisfy
the same expression.

Therefore ηπ = (ηπ(x) : x ∈ X) and ηπ′ = (ηπ′(x) : x ∈ X) both solve
the linear equation

η = ex0 + βηP′

where ex0 is the zero-one vector with a one in the x0 component. As
proven in Proposition 15, this equation has a unique solution so

ηπ = (I − βP′)−1ex0 = ηπ′ .

Further by definition

ηπ′(x, a) = ηπ′(x, a)π′(x|a) = ηπ(x, a).

Thus the two occupancy measures are identical. �

Since the reward function of an MDP is characterized by its oc-
cupancy measure (as we saw in (42)), we can now see that a Markov
decision process optimizing over all policies can be restricted to an
optimization problem just over stationary policies. (This was simi-
larly observed for finite time MDPs after Remark 24)

52

0.4. INFINITE TIME HORIZON NSW

Infinite Time Examples
Ex 44 (Machine Repair). Each day a machine is either working or
broken. If broken, then the day is spent repairing the machine at a
cost 8c. If themachine is working, then it can be either run unattended
or attended at a cost 0 or c. In each case the probability of the machine
breaking is p and q respectively. Costs are discounted by β ∈ (0, 1).

The objective is to minimize the infinite horizon discounted cost.
Letting F(0) and F(1) be the minimal cost starting on a day were the
machine starts broken or working, respectively. Show that it is opti-
mal to run the machine unattended iff 7p − 8q ≤ β−1.

Ex 45 (Symmetric Random Walk). Consider a symmetric random
walk on Z. We wish to choose a time to stop that minimizes the cost
k(x) = exp{−x} where x gives the value of the walk when stopped. Ar-
gue that Ws(x) the optimal value function for the s-time horizon prob-
lem is constant over s. Argue that

lim
s→∞

Ws(x) ,W(x)

where W(x) is the optimal value function for the infinite time optimal
stopping problem.
(Note for this Negative program we have a solution to the Bellman
equation that is not optimal.)

Ex 46 (Repeat Prisoner’s Dilemma). Two men are taken prisoner by
the authorities. They are interviewed separately and asked to con-
fess to the other prisoners involvement in a crime. A prisoner that
does not confess receives 1 year in prison. A prisoner that confesses
adds 6 years to the other prisoner’s sentence. This game can be ex-
pressed by the matrix

don’t confess confess
don’t confess

confess

(
(1, 1) (7, 0)
(0, 7) (6, 6)

)
For each entry (a, b) in the above matrix the left entry a gives the row
players sentence and b gives the column player’s sentence. Suppose,
given what the other prison does, each prison act selfishly to mini-
mize their time in jail.

i) Argue that the each prisoner will confess.

53

0.4. INFINITE TIME HORIZON NSW

We now assume the criminals from the Prisoner’s Dilemma are repeat
offenders. The are repeatedly arrested by the police and interviewed.
Each time they can chose whether to confess or not and afterwards
they find out if their fellow prisoner confessed or not. The payoffs are
the same in our previous example, except each time they meet their
payoffs are discounted by a multiplicative factor (1+r), for some r > 0.

ii) Show that if this repeated game is played for a finite set of times
t = 0, 1, ...,T then it is in the interested of each player to confess at
each time. [Hint: Argue for time T and work backwards].

A punishing strategy is a strategy where the prisoner will not confess
at every round unless his fellow prisoner confesses. If his fellow pris-
oner confesses at one time instance then the prisoner will confesses
for all subsequent time. I.e. the strategy places a heavy penalty on
the opponent for confessing.

iii) If this repeated game is played for an infinite set of times t =
0, 1, 2, 3, ... and if r is suitably small then show that both players play-
ing a punishing strategy is a Nash Equilibrium.

References
The distinction between discounted, positive and negative program-
ming is made by Blackwell [9, 10] and Staunch [45]. Average reward
is considered by Howard [24]. The distinction between these cases
is quite standard in different textbooks for instance see [37]. A early
review of martingale conditions for optimal control is by Davis [16].

54

0.5. ALGORITHMS FOR MDPS NSW

0.5 Algorithms for MDPs

• Policy Improvement; Policy Evaluation.

• Value Iteration; Policy Iteration.

• Temporal Differences; Q-factors.

• Linear Program formulation; Asynchronous Value Iteration.

We know now need some algorithms to solve MDPs. We now know
that a solution to Bellman’s equation will usually solve an MDP. In
the first instance, we can look to solve Bellman’s equation. For in-
finite time MDPs, we cannot exactly Bellman’s equation from some
initial state – like we could for finite time MDP. So we develop some
iterative procedures to solve the Bellman equation and more gener-
ally to solve an MDP.

At a high level, for a Markov Decision Processes (where the tran-
sitions Pa

xy are known), an algorithm solving a Markov Decision Pro-
cess involves two steps:

• (Policy Improvement) Here you take your initial policy π0 and
find a new improved new policy π, for instance by solving Bell-
man’s equation:

π(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a [R(x̂, π0)]

}
.

• (Policy Evaluation) Here you find the value of your policy. For
instance by finding the reward function for policy π:

R(x, π) = Ex,π

 ∞∑
t=0

βtr(Xt, π(Xt))

 .

55

0.5. ALGORITHMS FOR MDPS NSW

Value Iteration
Value Iteration provides an important practical scheme for approx-
imating the solution of an infinite time horizon Markov decision
process.

Def 47 (Value iteration). Take V0(x) = 0 for all x and recursively cal-
culate

Vs+1(x) = max
a∈A

{
r(x, a) + βEx,a

[
Vs(X̂)

]}
for s = 1, 2, .. this is called value iteration. We can then define a policy
by

πs+1(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a

[
Vs(X̂)

]}
We can think of the two display equations above, respectively, as
the policy evaluation and policy improvement steps. However, that
we don’t really need to keep a record of the policy found at each
iteration.

A Quick Example. Let’s do a quick example. In the figure below
there is a robot, that can go left or right by one square in each time-
step. If it ends in the far left square the robot gets a reward of 1 and
we finish. If it ends at the far right square we finish with a reward
of 2.

When implementing value iteration. We start at time t = 0 with a
row of zeros. We then look at whether we should go left or right by
looking at the value of the assigned to that square in the previous
iteration (note the value of the end squares does not change). At

56

0.5. ALGORITHMS FOR MDPS NSW

time t = 1, we see that the square next to the reward 1 square is
1 and the square next to the reward 2 square is 2, while the other
squares remain zero. So we go from a row of all zeros to the row
with values (1, 0, 0, 0, 2). Continuing in this way we get the remaining
rows. At the final iteration the value function does not change. This
means we have found the optimal value function (See Exercise 59).

Notice in this example it is not too clear what is the optimal policy
even if we have the optimal value function. This is a good reason
to consider including a discount factor just less than 1, as it will
encourage the use of shorter paths.

Value Iteration for positive programming. The following result
shows that Value Iteration converges to the optimal policy.

Thrm 48. For positive programming, i.e. where all rewards are pos-
itive and the discount factor β belongs to the interval (0, 1], then

0 ≤ Vs(x) ≤ Vs+1(x)↗ V(x), as s→∞ .

Here V(x) is the optimal value function.

The following lemma is the key property for value iterations conver-
gence, as well as a number of other algorithms.

Lemma 3. For reward function R(x) define

TR(x) = max
a∈A

{
r(x, a) + βEx,a [R(x̂)]

}
.

Show that if R(x) ≥ R̃(x) for all x ∈ X then TR(x) ≥ T R̃(x) for all x ∈ X

Proof. Clearly,

r(x, a) + βEx,a [R(x̂)] ≥ r(x, a) + βEx,a

[
R̃(x̂)

]
.

Now maximize both sides over a ∈ A. �

We now prove Theorem 48.

Proof of Thrm 48. Note that V1(x) = maxa r(x, a) ≥ 0 = V0(x). Now, since
Vs+1(x) = TVs(x), repeatedly applying Lemma 3 to the inequality
V1(x) ≥ V0(x) gives that

Vs+1(x) ≥ Vs(x) .

Since Vs(x) is increasing Vs(x) ↗ V∞(x) for some function V∞. We
must show that V∞ is the optimal value function from the MDP.

57

0.5. ALGORITHMS FOR MDPS NSW

Nduraote that Vs(·) is the optimal value function for the finite
time MDP with rewards r(x, a) and s time steps. So V(x) ≥ Vs(x) and
thus V(x) ≥ V∞(x). Further, for any policy π,

Vs(x) ≥ Rs(x, π) .

Now take limits V∞(x) ≥ R(x,Π). Now maximize over π to see that
V∞(x) ≥ V(x). So V∞(x) = V(x) as required. �

Value Iteration: Discounted Programming. We now consider
value iteration on a discounted MDP. The proof uses the contraction
property that we found in Theorem 32.8 We prove this in Lemma 4
below.

The theorem below shows that the value iteration converges fast
to the solution of a discounted program.

Theorem 2. For a discounted program with discount factor β ∈ (0, 1)
it holds that

||Vs − V||∞ ≤ βs
||V0 − V||∞

where here V is the optimal value function.

For the above proof we require the following lemma.

Lemma 4. If we define

TV(x) = max
a∈A

{
r(x, a) + βEx,a[V(x̂)]

}
then

||TV − TV′||∞ ≤ β||V − V′||∞

Proof. Notice if we let Q and Q′ be the Q-function of V and V′. I.e.

Q(x, a) := r(x, a) + βEx,a[V(x̂)]

then

|Q(x, a) −Q′(x, a)| = β|Ex,a[V(x̂) − V′(x̂)]| ≤ β||V − V′||∞ (15)
8This is analogous to the way that we used the monotonicity property from

Theorem 36 in the positive programming proof above.

58

0.5. ALGORITHMS FOR MDPS NSW

Finally

|TV(x) − TV′(x)| = |max
a

Q(x, a) −max
a′

Q(x, a′)|

≤ max
a
|Q(x, a) −Q(x, a′)|

≤ β||V − V′||∞

as required. (If the first inequality above is not immediately obvious
please see Lemma 33. The 2nd equality above is (15).) �

Proof of Theorem 2. We know from Theorem 32, that the optimal
value function satisfies TV = V. Also, by definition, value itera-
tion performs the update Vs = TVs−1. Thus

||Vs − V|| = ||TVs−1 − TV|| ≤ β||Vs−1 − V|| ≤ ... ≤ βs
||V0 − V||

as required. �

59

0.5. ALGORITHMS FOR MDPS NSW

Code for Value iteration.
def Value_Iteration (V,P, r , discount , time) :

’ ’ ’ Value I terat ion − a numerical solution to a MDP

Arguments :
P − P [a] [x] [y] gives probablity of x −> y for action a
r − r [a] [x] [y] gives reward for x −> y for action a
V − V[x] gives value for state x
discount − discount factor
time − number of i terat ions

Returns :
Value function and policy from value i terat ion

’ ’ ’
number_of_actions = len (P)
number_of_states = len (P [0])

Q = np. zeros ((number_of_actions , number_of_states))

for _ in range (time) :
for a in range (number_of_actions) :

for x in range (number_of_states) :
Q[a] [x] = np. dot (P [a] [x] , r [a] [x]+discount ∗V)

V_new = np.amax(Q, axis=0)

pi = np.argmax (Q, axis=0)

return V_new, pi

60

0.5. ALGORITHMS FOR MDPS NSW

Policy Iteration
We consider a discounted program with rewards r(x, a) and discount
factor β ∈ (0, 1). For policy iteration, we update policies and after
assessing their values. The idea is we take with a policy π; We
evaluate its reward R(x, π); We assume that we are going to follow
policy π from time t = 1 onwards; We look for the best action that we
can make now at time t = 0. This "best action" defines a new policy.

The reward for following action a for one step and then following
policy π thereafter is:

Qπ(x, a) := r(x, a) + βEx,a[R(x̂, π)] ,

(which you might recall is the Q-factor for policy π, (31)). We choose
the action that maximizes this for each x:

π̂(x) ∈ argmax
a∈A

r(x, a) + βEx,a

[
R(X̂, π)

]
.

The change from π to π̂ gives one iteration of policy iteration.

Def 49 (Policy Iteration). Given a stationary policy π,

1. We calculate the reward of policy π, R(x, π).

2. We define a new stationary policy, Iπ, by

Iπ(x) ∈ argmax
a∈A

r(x, a) + βEx,a [R(x̂, π)]

Policy iteration is the algorithm that takes

πn+1 = Iπn

Step 1 corresponds to the policy evaluation step and step 2 cor-
responds to the policy improvement step. We need to evaluate R(x, π)
for a stationary policy π which we can do as follows:

Remark 50 (Calculating R(x, π)). If we think of the policy as a matrix
P = (Pπxy : x, y ∈ X) and rewards as a vector r = (r(x, π(x)) : x ∈ X) then
R = (R(x, π) : x ∈ X) is the vector such that

R = r + βPR

which is solved by R = (I − βP)−1r. I.e. evaluating a policy is really a
little matrix algebra.

61

0.5. ALGORITHMS FOR MDPS NSW

Example Again. We go back to our robot example from before, but
now for policy iteration. See the figure below.

We start with an arbitrary policy at t = 0. Notice for the far-left
square (next to the reward of 1) if we follow the policy then we get
a reward of 1. While are at the far right square, the robot moves
left then right indefinitely. Thus it receives zero reward from this
square. For one iteration of policy iteration, we take a square (lets
take the far right square), we then look what happens if we change
its direction and then follow the previous policy. In the case of the
right-hand square it is clearly better to change from left (with long-
run reward of 0) to right (with a reward of 2). Similar for the square
to the left of the robot. It was right at time t = 0 but left at time
t = 1. This is because going left and then following the policy from
time t = 0 gives it a reward of 1 rather than 0 which it is what it was
getting previously.

Notice in the final iteration the policy does not change. This im-
plies Bellman’s equation holds and thus we have found an optimal
policy. (See Exercise 59.)

Convergence of Policy Iteration. The following result proves that
policy iteration converges to the optimal solution.

Thrm 51. For a positive program (or discounted program), under Pol-
icy Iteration

R(x, πn)↗ V(x) as n→∞

Proof. By the optimality of Iπ with respect to π, we have

R(x, π) = r(x, π(x)) + βEx,π(x) [R(x̂, π)] ≤ r(x,Iπ(x)) + βEx,Iπ(x) [R(x̂, π)] .

62

0.5. ALGORITHMS FOR MDPS NSW

Thus from the last part of Thrm 15, we know that R(x, π) ≤ R(x,Iπ).
This shows that Policy iteration improves solutions. Now we must
show it improves to the optimal solution.

First note that

r(x, a) + βEx,a [R(x̂, π)] ≤ r(x,Iπ(x)) + βEx,Iπ(x) [R(x̂, π)]
≤r(x,Iπ(x)) + βEx,Iπ(x) [R(x̂,Iπ)] = R(x,Iπ).

We can use the above inequality to show that the following process
is a supermartingale

Mt =

t−1∑
s=0

βsr(Xs, π
∗(Xs)) + βtR(Xt, πT−t)

where π∗(x) is the optimal policy. The interpretation of Mt is the
reward of following π? for t steps and πT−t thereafter.9 To see taking
expectations with respect to the optimal policy π∗ gives

E∗ [Mt+1 −Mt|Ft]

= βtE∗
[
βR(Xt+1, πT−t−1) + r(Xt, π

∗(X)) − R(Xt, πT−t)
∣∣∣∣Ft

]
= βtE∗

[
βE∗Xt,π∗(Xt)

[
βR(X̂, πT−t−1) + r(Xt, π

∗(Xt)) − R(Xt, πT−t)
] ∣∣∣∣Ft

]
≤ 0 .

So Mt is a supermartingale. (I.e. πT−t improves the policy in the
sense that it is better to do π? for t steps and then πT−t than do π?
for t + 1 steps and then do πT−t−1.)

Since Mt is a supermartingale:

R(x, πT) = E∗x [M0] ≥ E∗x [MT] = E∗x
[
βTR(XT, π0)

]
︸ ︷︷ ︸

−−−→
T→∞

0

+ RT(x, π∗)︸ ︷︷ ︸
−−−→

T→∞
V(x)

. (16)

Therefore, as required, limT→∞ R(x, πT) ≥ V(x). �

Remark 52 (Discounted Programming.). Notice with the above the-
orem, we have also proven convergence for a discounted program.
Take a discounted program, we can redefine rewards

rnew(x, a) := r(x, a) + rmax ≥ 0
9Note we are implicitly assuming an optimal stationary policy exists. We can

remove this assumption by considering a ε-optimal (non-stationary) policy. How-
ever, the proof is a little cleaner under our assumption.

63

0.5. ALGORITHMS FOR MDPS NSW

where rmax = maxx′,a′ |r(x′, a′)| then these reward define an equivalent
a positive program. Moreover, the Policy Iteration updates are unaf-
fected by this constant factor change in rewards. So the above result
implies convergence for discounted programs. Further note that the
both terms in (16) converge at rate βT.

64

0.5. ALGORITHMS FOR MDPS NSW

def Pol icy_I terat ion (pi ,P , r , discount) :
’ ’ ’ Pol icy I terat ion − a numerical solution to a MDP

Arguments :
P − P [a] [x] [y] gives probablity of x −> y for action a
r − r [a] [x] [y] gives reward for x −> y for action a
pi − pi [x] gives action for state x
discount − disount factor

Returns :
pol icy from ∗ ∗one ∗ ∗ policy i terat ion
value function of input policy

’ ’ ’

Collate array of states and actions
number_of_actions , number_of_states = len (P) , len (P [0])
Actions , States = np. arange (number_of_actions) , np. arange (
number_of_states)

Get transit ions and rewards of pol icy pi
P_pi = np. array ([P [pi [x]] [x] for x in States])
r_pi = np. array ([r [pi [x]] [x] for x in States])
Er_pi = [np. dot (P_pi [x] , r_pi [x]) for x in States]

Calculate Value of pi
I = np. ident i ty (number_of_states)
A = I − discount ∗ P_pi
R_pi = np. l ina lg . solve (A, Er_pi)

Calculate Q_factors of pi
Q = np. zeros ((number_of_actions , number_of_states))
for a in range (number_of_actions) :

for x in range (number_of_states) :
Q[a] [x] = np. dot (P [a] [x] , r [a] [x]+discount ∗R_pi)

policy i terat ion update
pi_new = np.argmax (Q, axis=0)

return pi_new , R_pi

65

0.5. ALGORITHMS FOR MDPS NSW

Linear Programming Approach.
Although the previous two methods are specific to dynamic pro-
gramming. We can reduce the dynamic programming problem into
a linear optimization problem. After this there are a host of op-
timization algorithms to solve this class of problems, the simplex
method and interior point methods being two of the most popu-
lar. (We do not cover these optimization algorithms here. There are
however plenty of good references for more details).

Recall that for any function (R(x) : x ∈ X), we define

TR(x) = max
a∈A

{
r(x, a) + βEx,a[R(x̂)]

}
.

We want to solve the Bellman equation:

V(x) = max
a∈A

r(x, a) + βEx,a[V(x̂)]

where (V(x) : x ∈ X). In other words,

TV(x) = V(x) .

Further it is not hard to show that

R(x) ≥ TR(x), ∀x =⇒ R(x) ≥ V(x), ∀x

(We prove this in Lemma 5 after Proposition 53 below.) This shows
that V(x) is the smallest vector such that

V(x) ≥ r(x, a) + β
∑

x̂

V(x̂)P(x̂|x, a) .

In otherwords, we want to solve

Minimize
∑
x∈X

ξ(x)V(x) (LP)

subject to V(x) ≥ r(x, a) + β
∑

x̂

V(x̂)P(x̂|x, a), ∀x ∈ X, a ∈ A

over (V(x) : x ∈ X) ∈ RX

We can apply a linear programming or convex optimization algo-
rithm, such as the Simplex Algorithm, to solve this linear pro-
gram.10

10We may need to apply two stage simplex as the initial zero solution is not
feasible.

66

0.5. ALGORITHMS FOR MDPS NSW

As we will prove shortly, the dual of this linear program is

Maximize
∑
x∈X

η(x, a)r(x, a) (Dual)

subject to
∑
â∈A

η(x̂, â) = ξ(x̂) + β
∑
x∈X

∑
a∈A

η(x, a)P(x̂|x, a), ∀x̂ ∈ X

over (η(x, a) : x ∈ X, a ∈ A) ∈ RX×A+ .

In the above η(x, a) is the discounted occupancy measure of the
chain, which we recall from Definition 42 in Section 0.4. A brief
refresher on Lagrangian optimization and duality is given in the
appendix.

Prop 53. The Dual of (LP) is (Dual).

Proof. The Lagrangian is

L(V; η) =
∑
x∈X

ξ(x)V(x) −
∑
x∈X

∑
a∈A

η(x, a)

V(x) − r(x, a) − β
∑

x̂

P(x̂|x, a)V(x̂)


=

∑
x

V(x)

ξ(x) −
∑

a

η(x, a) + β
∑
x̂,a

η(x̂, a)P(x|x̂, a)

 +
∑
x,a

η(x, a)r(x, a)

For a well-defined Lagrangian, we need the term in the square brack-
ets to be zero. This gives the constraint in the dual problem. Also
for complementary slackness, we require that η(x, a) is non-negative.
After taking account for this, we see that we arrive at the dual prob-
lem (Dual). �

Lemma 5. For a positive program or a discounted program it holds
that

R(x) ≥ TR(x), ∀x =⇒ R(x) ≥ V(x), ∀x .

Proof. We prove the result with a rollout argument (cf. remark 17).
Specifically let π? be an optimal stationary policy and let (x̂t : t ∈ Z+)

67

0.5. ALGORITHMS FOR MDPS NSW

be the Markov chain defined by this policy.11 Then, by assumption

R(x) ≥ r(x, π?(x)) + βEx,π?(x)[R(x̂)]

≥ Ex,π?[r(x̂0, π
?(x̂0)) + βr(x̂1, π

?(x̂1))] + β2E[R(x̂2)]
...

≥ RT(x, π?) + βT+1Ex,π?[R(x̂t+1)]
= V(x) + o(1)

Letting T→∞ gives the result. �

11As usual if there is no optimal stationary policy we can take an ε-optimal
stationary policy and let ε go to zero at the end of the proof.

68

0.5. ALGORITHMS FOR MDPS NSW

Asynchronous Value Iteration.
Value iteration assumed that we updated all states at each iteration.
If the number of states is large then this can mean each iteration is
expensive. However, this is not required for convergence. We now
consider the setting where states are updated asynchronously. Here
is assume that each state is updated one at time in an arbitrary
order.

We also allow for these iterations to occur without up to date
value function estimates. This is important because if the value
iteration algorithm is implemented in parallel over multiple proces-
sors. As there may need to be communication between different
components.

The model setting. We focus on the case of discounted program-
ming. Here for each state x we maintain a value function estimates

Vs = (Vs(x) : x ∈ X)

Here s counts the number of iterations our algorithm has performed
so far.

We update states asynchronously. Specifically we let Tx be the
set of times where state x is updated. We assume that |Tx| = ∞ and,
these sets are disjoint, i.e. Tx ∩ Tx′ = ∅. For times s ∈ Tx, the set of
value function estimates that we have might not be the most recent
values. We let τx′x(s) be the last iteration before iteration s that state
x received the current value estimate of state x′.

Thus we update x based on estimates

Vx
s = (Vτxx′ (s)(x′) : x′ ∈ X)

Asynchronous value iteration. Asynchronous value iteration per-
forms the following updates: at iteration s if s ∈ Tx then we set

Vs(x) = max
a∈A

{
r(x, a) + βE

[
Vx

s (x̂)
]}

Convergence Result. Here we see that under pretty mild condi-
tions that asynchronous value iteration converges.

Theorem 3. If τx′x(s)→∞ as s→∞ then

Vs → V

where V is the optimal value function.

69

0.5. ALGORITHMS FOR MDPS NSW

The following shows that we maintain the contraction property
when we update the value function at state x according to this es-
timate.

Lemma 6. The operation for V = Vx
s the operation

TV(x) = max
a∈A

{
r(x, a) + Ex,a[V(x̂)]

}
is a contraction in the sense that

|TV(x) − TV′(x)| ≤ β||V − V′||∞ .

The proof here is given in Lemma 4. (So we omit the proof and refer
the reader there.)

Remark 54. As powerful and general as the statement of Theorem
3 is, once we have Lemma 6 in place the rest of the proof is a book-
keeping exercise. Basically Lemma 6 shows that if we make progress
updating any state x then that progress is not going to be lost.
Proof. We prove the result by induction. On the induction hypoth-
esis that there exists a time σk such that for all s ≥ σk

||Vx
s − V|| ≤ βk

||V0 − V||, ∀x ∈ X .

So each x has a close estimate to the true value function. (Notice
that Lemma 6 implies that |Vs(x) − V(x)| can only decrease. Thus if
the above holds then it also holds that ||Vs − V|| ≤ βk

||V0 − V||. So
the most upto date value function is also close estimate of the true
value function.)

Let x be the next time that we update state x, i.e. s ∈ Tx s.t. s ≥ σk.
Then, by Lemma 6 and the induction hypothesis, it holds that

|Vs(x) − V(x)| ≤ β||Vx
s − V||∞ ≤ βk+1

||V0 − V||∞ .

So if we let tk+1 be the next time after time σk that all states have
been updated in this way, then for all s ≥ tk+1

||Vs − V||∞ ≤ βk+1
||V0 − V||∞ . (17)

Further, we let σk+1 be the first time after tk that each state x′ has
been updated at each x, i.e. the first time s such that τx′x(s) ≥ tk

holds for all x′ and x. Then, since (17) holds, it also holds that for
all s ≥ σk+1

||Vx
s − V||∞ ≤ βk+1

||V0 − V||∞ ,

as required. �

70

0.5. ALGORITHMS FOR MDPS NSW

MDP Algorithms – Examples
Ex 55. Apply the policy iteration algorithm it to the following problem:

End End

3 1

Here a robot must navigate to either end point. It receives a reward of
3 for reaching the lefthand side and 1 for the righthand side. An initial
policy from which you must start is provided by the arrows above.

Ex 56 (GridWorld). A robot is placed on the following grid.

The robot can chose the action to move left, right, up or down provided
it does not hit a wall, in this case it stays in the same position. (Walls
are colored black.) With probability 0.8, the robot does not follow its
chosen action and instead makes a random action. The rewards for
the different end states are colored above. Write a program that uses,
Value Iteration to find the optimal policy for the robot.

Ex 57 (GridWorld, again). Write a program that uses, Policy iteration
to find the optimal policy for the robot in [56].

Ex 58. Show that for discounted programming,

Vs(x) +
βs+1rmax

1 − β
≥ V(x) ≥ Vs(x) −

βs+1rmin

1 − β

71

0.5. ALGORITHMS FOR MDPS NSW

Ex 59. Here we consider a positive programming problem

a) Let VR give the value function reached after one iteration of the
value iteration algorithm. Argue that if VR = R then R(x) is optimal.

b) Let Iπ give the policy reached after one iteration of the policy im-
provement algorithm. Argue that if Iπ = π then π is optimal.

References.
Value iteration is due to Richard Bellman, and Policy Iteration is due
to Howard [24]. Both are now standard text book methods [6, 37].

72

0.6. OPTIMAL STOPPING NSW

0.6 Optimal Stopping

• Optimal Stopping Problems; One-Step-Look-Ahead Rule.

• The Secretary Problem.

• Infinite Time Stopping; Stopping Random Walks.

An Optimal Stopping Problem is an Markov Decision Process where
there are two actions: a = 0 meaning to stop, and a = 1 meaning to
continue. Here there are two types of costs

c(x, a) =

κ(x), for a = 0 (the stopping cost)
c(x), for a = 1 (the continuation cost),

A MDP with these costs is called an optimal stopping problem.
Assuming that time is finite, the Bellman equation is

Cs(x) = min {k(x), c(x) + Ex[Cs−1(x̂)]}

for s ∈N and C0(x) = k(x).

One Step Look Ahead
The One Step Look Ahead policy is the policy where we stop if stop-
ping now has lower cost than continuing one step further and then
stopping. This simple policy can be optimal for a wide range of op-
timal stopping policies. In particular, this is the case when the set
of states for which we stop is closed.

Def 60 (OLSA rule). In the One Step Look Ahead (OSLA) rule we stop
whenever the state belongs to the set

S = {x : k(x) ≤ c(x) + Ex[k(x̂)]}.

We call S the stopping set. In words, you stop whenever it is better
stop now rather than continue one step further and then stop.

73

0.6. OPTIMAL STOPPING NSW

Def 61 (Closed Stopping Set). We say the set S ⊂ X is closed, it once
inside that said you cannot leave, i.e.

Pxy = 0, ∀x ∈ S, y < S.

Prop 62. For the finite time stopping problem, if the stopping set given
by the one step lookahead rule is closed then the one step lookahead
rule is an optimal policy.

Proof. Given the set S is closed, we argue that if Cs−1(x) = k(x) for x ∈ S
then Cs(x) = k(x):If x ∈ S then since S is closed X̂ ∈ S. In otherwords
Cs−1(X̂) = k(X̂). Therefore, in this case, Bellman’s equation becomes

Cs(x) = min{k(x), c(x) + Ex[Cs−1(X̂)]} = min{k(x), c(x) + Ex

[
k(X̂)

]
} = k(x).

The last inequality above follows by the definition of x ∈ S.
We now proceed by induction. The OSLA rule is optimal for s = 1

steps, since OSLA is exactly the optimal policy for one step.
Suppose that the result is holds for upto s−1 steps. Now consider

the Optimal Stopping Problem with s steps. If x ∈ S then Cs(x) = k(x).
So it is better to stop. If x < S, then clearly it’s better to continue. �

OSLA in Infinite Time.? We now give conditions for the one step
look ahead rule to be optimal for infinite time stopping problems.

Prop 63. If the following two conditions hold

• K = maxx k(x) < ∞, minx k(x) ≥ 0,

• C = minx c(x) > 0,

then the One-Step-Lookahead-Rule is optimal.

Proof. Suppose that a policy π stops at time τ and is better than or
equal to stopping at time 0 then

(s + 1)CP(τ > s) ≤ E


 τ−1∑

t=0

c(xt) + k(xτ)

 I[τ > s]

 ≤ k(x0) ≤ K.

Therefore if we follow optimal policy12 π but for the s time horizon
problem and stop at s if τ ≥ s then

L(x) ≤ Ls(x) ≤ L(x) + KP(τ > s) ≤ L(x) +
K2

C(s + 1)
−−−→
s→∞

L(x)

12If an optimal policy doesn’t exist, you make take a policy that is within ε of
the optimal cost and then let ε go to zero at the end of the proof.

74

0.6. OPTIMAL STOPPING NSW

The first inequality holds since Ls(x) minimizes over s time steps but
L(x) minimizes over all time steps. The second inequality holds since
stopping at time τ on the event {τ < s} has a cost less than L(x) and
stopping at time s on the event {τ ≥ s} has a cost of at most K. Thus
the loss from this policy is less than the optimal rule over s time
steps, namely Ls(x).

Thus Ls(x)→ L(x).
As before (for the finite time problem), it is not optimal to stop

if x < S and for the finite time problem Ls(x) = k(x) for all x ∈ S.
Therefore, since Ls(x)→ L(x), we have that L(x) = k(x) for all x ∈ S and
there for it is optimal to stop for x ∈ S. �

Stopping a Random Walk
The one step lookahead rule is not always the correct solution to an
optimal stopping problem. Another approach is to use an excessive
majorant. We consider stopping a random walk because it direct
interpretation in terms of concavity, but the reader can check that
the same idea works for other Markov chains.

Def 64 (Concave Excessive Majorant). For a function r : {0, ...,N} →
R+ a concave majorant is a function G such that

• G(x) ≥ 1
2G(x − 1) + 1

2G(x + 1)

• G(x) ≥ r(x).

Prop 65 (Stopping a Random Walk). Let Xt be a symmetric random
walk on {0, ...,N}where the process is always stopped at 0 and N. For
each x ∈ {0, ...,N}, there is a positive reward of r(x) for stopping. We
are asked to maximize

E[r(XT)]

where T is our chosen stopping time. The optimal value function V(x)
is the minimal concave majorant. Thus it is optimal to stop whenever
V(x) = r(x).

Proof. The Bellman equation is

V(x) = max
{
r(x),

1
2

V(x − 1) +
1
2

V(x + 1)
}

75

0.6. OPTIMAL STOPPING NSW

with V(x) = r(0) and V(N) = r(N). Thus the optimal value function is
a concave majorant.

We will show that the optimal policy is the minimal concave ma-
jorant of r(x). We do so by, essentially applying induction use value
iteration. First R0(x) = 0 ≤ G(x) for any concave majorant of r(x). Now
suppose that Rs−1, the function reached after s − 1 value iterations,
satisfies Rs−1(x) ≤ G(x) for all x, then, for time s,

Rs(x) = max
{
r(x),

1
2

Rs−1(x − 1) +
1
2

Rs−1(x + 1)
}

≤ max
{
r(x),

1
2

G(x − 1) +
1
2

G(x + 1)
}

≤ max {r(x),G(x)} = G(x).

Since value iteration converges Rs(x) ↗ V(x), where V(x) satisfies
V(x) ≤ G(x). So, as required, V(x) is the minimal concave majorant.

Finally observe that from the Bellman equation the optimal stop-
ping rule is to stop whenever V(x) = r(x) for the minimal concave
majorant. �

Remark 66. Note if we have a more general Markov chain then we
can replace the convexity condition with the statement

G(x) ≥ Ex[G(x̂)] .

Exercises
Ex 67 (The Secretary Problem). There are N candidates for a secre-
tary job. You interview candidates sequentially. After each interview,
you must either accept or reject the candidate. We assume each can-
didate has the rank: 1, 2, ...,N And arrive for interview uniformly at
random. Find the policy that maximises the probability that you hire
the best candidate.

Ex 68 (Optimal Parking). You look for a parking space on street, each
space is free with probability p = 1 − q. You can’t tell if space is free
until you reach it. Once at space you must decide to stop or continue.
From position s (s spaces from your destination), the cost of stopping
is s. The cost of passing your destination without parking is D.

76

0.6. OPTIMAL STOPPING NSW

Ex 69. In a game show a contestant is asked a series of 10 ques-
tions. For each question q = 1, ..., 10 there is a reward rq for answering
the question correctly. With probability pq the contestant answers the
question correctly. After correctly answering a question, the contes-
tant can choose to stop and take their total winnings home or they
can continue to the next question q + 1. However, if the contestant
answers a question incorrectly then the contestant looses all of their
winnings. The probability of winning each round is decreasing and
is such that the expected reward from each round, pqrq, is constant.

i) Write down the Bellman equation for this problem.

ii) Using the One-Step-Look-Ahead rule, or otherwise, find the op-
timal policy of the contestant.

Ex 70 (Burglar). A burglar robs houses over N nights. At any night
the burglar may choose to retire and thus take home his total earn-
ings. On the tth night house he robs has a reward rt where rt is an
iidrv with mean r̄. Each night the probability that he is caught is p
and if caught he looses all his money. Find the optimal policy for the
burglar’s retirement.

Ex 71 (Bruss’ Odds Algorithm). You sequentially treat patients t =
1, ...,T with a new trail treatment. The probability of success is pt =
1−qt. We must minimize the number of unsuccessful treatments while
treating all patients for which the trail is will be successful. (i.e. if we
label 1 for success and 0 for failure, we want to stop on the last 1).
Argue, using the One-Step-Look-Ahead rule that the optimal policy is
the stop treating at t∗ the largest integer such that

pt∗

qt∗
+ ... +

pT

qT
≥ 1.

This procedure is called Bruss’ Odds Algorithm.

Ex 72. You own an asset that must be sold in T days. Each day you
are offered a price for the asset according to a probability distribution
density f (x). You may the accept any offer that you have received so
far. Once the asset is sold the money is invested in a bank account
which multiplies the invested money by β−1 each day. Here β ∈ (0, 1).
Your task is the maximize your profit at time T.

77

0.6. OPTIMAL STOPPING NSW

Ex 73. You own a “toxic" asset its value, xt at time t, belongs to
{1, 2, 3, ...}. The daily cost of holding the asset is xt. Every day the
value moves up to x + 1 with probability 1/2 or otherwise remains the
same at x. Further the cost of terminating the asset after holding it for
t days is C(1 − α)t. Find the optimal policy for terminating the asset.

References.
An early account of optimal stopping is Chow, Robbins and Sieg-
mund [15]. An authoritative texts mostly focusing on stopping dif-
fusions is Shiryaev [43]. Ferguson provides a good step of un-
published notes on his website.13 Again most standard texts on
stochastic control cover optimal stopping, see for example Whittle
[56].

13https://www.math.ucla.edu/~tom/Stopping/Contents.html

78

https://www.math.ucla.edu/~tom/Stopping/Contents.html

0.7. INVENTORY CONTROL. NSW

0.7 Inventory Control.

• S-Inventory Control

• (s,S)-Inventory Control; K-Convexity.

We consider the problem where there is an amount of stock xt at
time t. You can perform the action to order at units of stock. Further
the demand at time t is dt. We assume dt is independent over t. The
change in the amount of stock follows the dynamic:

xt+1 = xt + at − dt .

It is possible for xt to be negative, which corresponds to backordered
stock.

There is a cost for ordering a ∈ R units of stock:

c(a) = K + ca .

Note here c(a) = 0 if a = 0. There is a cost κ(x) for holding stock when
x > 0 or for unmet demand when x < 0. Specifically

κ(x) =

px if x ≥ 0 ,
hx if x < 0 .

for positive constants h and p. If we consider the minimization prob-
lem over T time steps then we have a dynamic program:

LT(x) = min
a0,...,aT

E

 T∑
t=0

c(at) + κ(xt + at − dt)

 .
The Bellman equation for this optimization problem is

Lt(x) = min
a≥0
{c(a) + Ed[κ(x + a − d)] + E[Lt−1(x + a − d)]}

= min
y≥x
{c(y) + Ed[κ(y − d)] + E[Lt−1(y − d)]} − cx .

Here y = x + a. If we define B(x) as follows

Bt(y) = cy + Ed[κ(y − d)] + E[Lt−1(y − d)] ,

79

0.7. INVENTORY CONTROL. NSW

then (removing the subscript t for now) notice the above Bellman
Equation becomes

L(x) = min
{
B(x),min

y>x
{K + B(x)}

}
− cx . (18)

There exists an explicit closed form solution to this optimization.
Specifically there exists values s and S such that if the stock level
goes below s then we order enough to have S units of stock. (We will
show that S minimizes B(x) and s is such that B(s) = K + B(S).)

We give a proof for the case where K = 0. This gives the nec-
essary intuition for the more general case where K > 0, which we
subsequently discuss. (The formal argument is given in a series of
exercises: Ex 75–Ex 78.)

S-Inventory control.
We consider the equation (18) with K = 0. Notice if B(x) is convex
and B(x) → ∞ as |x| → ∞ then S, the minimum of B, is finite. Thus
from (18) it holds that

L(x) + cx = min
y≥x

B(y) =

B(S) if x ≤ S ,
B(x) if x > S .

Notice if B(x) is convex then relatively straight forward to check that
L(x) is convex and L(x)→∞ and |x| → ∞ (see Ex 75). Also see Figure
3.

Further, if, given the function L(x) above, we now update B(x) by
taking

B(y) = cy + Ed[κ(y − d)] + Ed[L(y − d)] ,

then it is straight-forward to check that the new function B is also
convex and B(x)→∞ as |x| → ∞ (see Ex 75).

Thus (putting sub-script t back and noting that L0(x) is convex)
we see that the sequence of functions Lt(x) and Bt(x) are convex and
that St, the minimum of Bt(x), defines the optimal control

• If x < St then order so you have St units of stock, x + a = St .

• If x ≥ St then do nothing.

80

0.7. INVENTORY CONTROL. NSW

Figure 3: B(x) and L(x) for K = 0.

(s,S)-Inventory control.
We consider the equation (18) with K > 0. That is

L(x) + cx = min
{
B(x),min

y>x
{K + B(x)}

}
. (19)

In general B(x) will not be convex, but let’s assume it is for a moment
in order to gain intuition. Again let S be the minimum of B(x). In
this case the minimization over y > x above is solved at y = S if x ≤ S
and y = x if x > S. (Note if y = x in (19) it is obviously better to take
B(x) rather than B(x) + K.) So we have that

L(x) + cx = min {B(x),K + B(S)} . (20)

Now assuming B(x) is continuous then there will be a value of x =
s < S such that

B(s) = K + B(S) . (21)

This will be the point for which for x < s then K+B(S) is the minimum
in (19), while for x ≥ s, B(x) will be the minimum in (19). I.e. In this

81

0.7. INVENTORY CONTROL. NSW

case the optimal control will be

x + a =

S if x < s ,
x if x ≥ s .

(22)

For a convex function B(x) we plot L(x) + ca in Figure 4. Notice that
L(x) is clearly not convex. Essentially, the additional K term has
introduced a "bump" of size K. So rather than assume convexity
motivates, this motivates the idea of K-convexity.

Figure 4: B(x) and L(x) + cx for K > 0.

Definition 1 (K-convex). A function B is K-convex if

K + B(z + y) ≥ B(z) + z
[
B(y) − B(y − b)

b

]
Remark 74. The definition above is not terribly intuitive. It can be
shown that K-convexity means that for x < z the line segment from
(z,B(z) + K) to (x,B(x)) does not intersect (y,B(y)) for any value of y
between x and z. I.e. if you are standing at point (z,B(z)+K) you have
an unobstructed view of (x,B(x)).

If B(x) is K-convex then we can show that (19) is solved by (22),
just like in the convex case. (This is Ex 76.) Further, we can show

82

0.7. INVENTORY CONTROL. NSW

that if B(x) is K-convex then L(x) defined by (20) is K-convex. (This is
Ex 78). Thus it can be shown that when we update B(x) according
to the rule

B(y) = cy + Ed[κ(y − d)] + E[L(y − d)]

then B is also K-convex. (This is Ex 77.)

Exercises
Ex 75. a) Given B(x) is convex and B(x)→∞ for |x| → ∞, show that

L(x) + cx = min
y≥x

B(y) =

B(S) if x ≤ S ,
B(x) if x > S .

is such that L(x) is convex and L(x)→∞ for |x| → ∞.

b) Given L(x) is convex and L(x)→∞ for |x| → ∞, show that

B(y) = cy + Ed[κ(y − d)] + Ed[L(y − d)] ,

is such that B(x) is convex and B(x)→∞ for |x| → ∞.

Ex 76. We let B(x) be K-convex, continuous with B(x)→∞ as |x| → ∞.
Also let S = min B(x) and s is the smallest number such that B(s) =
B(S) + K.

a) Show that, for x < s, B(x) > B(S) + K .
(Hint: show B(x) > B(s).)
b) Show that for s < x < y, B(x) ≤ B(y) + K.
(Hint: consider two cases x < S and x > S.)
c) Show that (19):

L(x) + cx = min
{
B(x),min

y>x
{K + B(y)}

}
is solved by (22):

x + a =

S if x < s ,
x if x ≥ s .

The following exercise establishes some properties of K-convex
functions

83

0.7. INVENTORY CONTROL. NSW

Ex 77. Show that
a) The sum of K-convex functions is K-convex.
b) A convex function is K-convex.
c) If B(x) is K-convex then so is B(x + a) is K-convex.
d) The convex combination of K-convex functions is K-convex.
e) If B is K-convex then EZ[B(x + Z)] is K-convex.

Ex 78. If we let

L(x) =

K + B(S) − cx if x < s ,
B(x) − cx if x ≥ s .

where S minimizes B(x) and s is the smallest value such that B(s) =
K + B(S). We will show that L is K-convex:

K + L(z + y) ≥ L(z) + z
[
L(y) − L(y − b)

b

]
. (23)

Verifying (23) by moving s through the following cases:

a) s ≤ y − b
b) y − b < s < y and B(y) ≥ B(s)
c) y − b < s < y and B(y) < B(s)
d) y < s < y + z
e) y + z < s

References.
The idea of K-convexity is due to Scarf [42]. A full account of all the
calculations above is given in the excellent text of Bertsekas [6].

84

0.8. PARTIALLY OBSERVABLE MDPS NSW

0.8 Partially Observable MDPs

• Partially Observable MDP; Belief States.

• Reduction to MDP.

It is common that we do not observe the state of a Markov de-
cision process. For instance, we want to control the path of a heli-
copter. We never know the exact state instead we have to take noisy
measurements from sensors and then use these. A Partially Ob-
servable is the extension of the MDP framework accounts for this
feature.

The state of a POMDP evolves a Markov decision process but
we only receive an observation of the current state rather than the
actual state of the chain. See Figure 5.

Figure 5:

Definition of POMDP.
States x ∈ X, actions a ∈ A, and rewards r(x, a) are the same as we
defined for an MDP, see Section 0.3. The state evolves as before,
specifically

Xt+1 = f (Xt,At; Ut)

85

0.8. PARTIALLY OBSERVABLE MDPS NSW

where Xt is the state at time t and action At is the action at time t
and where Ut is an independent random variable. As a function of
the current the state, we receive an observation

Ot = g(Xt,U′t)

where Xt is the state at time t and where U′t is an independent ran-
dom variable.14 We let Ω be the set of observations. A policy must
chose an action as a function of the observations, i.e. we select

πt(Ot, ...,O0) ∈ A ∀t ∈ Z+. (24)

This defines a Partially Observable Markov Decision Process (POMDP).15
Although the sequence (Xt,Ot), t ∈ Z+, forms a Markov chain, the

sequence of observations Ot, t ∈ Z+, is no longer Markov. The loss
of the Markov property means that a policy cannot simply select an
action, πt, as a function of the current observation, which we could
do for an MDP. So we let P be the set of policies, i.e. sequences of
functions of the form (24).

The objective of a POMDP is the same as for a MDP but, as just
discussed, the set of policies is different:

maximize E

 ∞∑
t=0

βtr(Xt, πt)

 over Π ∈ P. (25)

Note that we could also take the objective to depend on the obser-
vation Ot instead of Xt.

Reduction to an Equivalent MDP.
It is, in fact, possible to reduce a POMDP to an MDP. This is perhaps
not too surprising as in informal terms: if we condition on enough
state information then what is left is independence, and thus the for
a suitably large state the evolution is Markov. However, for POMDP
this has a particularly nice formulation in terms of Bayes rule.

Def 79 (Belief state). We define a belief state, b = (b(x) : x ∈ X), to be
a probability distribution over the set of states X. We let B the set of
belief states.

14We could generalize slightly to let Ot also be a function of the previous action
At−1. However, for notation simplicity, we do not assume this here.

15This is pronounced pomm-dee-pee.

86

0.8. PARTIALLY OBSERVABLE MDPS NSW

A belief state summarizes all the information we have about
where we think the state is going to be at the next time. So, at
time t, we think of the belief state as being

bt(x) = P(Xt+1 = x|At = at,Ot = ot, ...,A0 = a0,O0 = o0)

where a0, ..., at are the actions and o0, ...,ot are the observations taken
up until time t.

We will apply some shorthand notation

P(o|x) = P(O0 = o|X0 = x) and P(x̂|x, a) = P(X1 = x̂|X0 = x,A0 = a) .

Theorem 4. The POMDP (25) is equivalent to an MDP over belief
states b ∈ B with instantaneous reward function

ρ(b, a) =
∑
x∈X

b(x)r(x, a)

and the plant equation, which gives the next belief state from obser-
vation ô, action a and current belief state b, is

b̂(x̂) =
P(ô|x̂)

∑
x∈X P(x̂|x, a)b(x)

P(ô|a, b) .
(26)

and the transition probabilities for b̂ given belief state b and action a
are given by

P(b̂|b, a) :=
∑
ô∈Ω

P(b̂|b, a, ô)P(ô|b, a) (27)

above P(ô|a, b) after taking action at = a can be interpreted as a nor-
malizing constant for b̂(x)

P(ô|b, a) =
∑
x̂∈X

P(ô|x̂)
∑
x∈X

P(x̂|x, a)b(x) .

and

P(b̂|b, a,o) =

1 if b̂ is given by formula (26),
0 otherwise.

(28)

Remark 80. The subtle point here is that the belief state b summa-
rizes all past information required to determine the distribution of the
next state x̂. I.e. so long as we know bt = b and at = a, then the
past actions and observations do not effect our belief about the state
xt+1 = x̂. Expressed one way we have recovered the Markov property
by considering a suitably large state vector b. Expressed another way
the belief vector is a sufficient statistics, in that its value summarizes
all information above the past actions and observations.

87

0.8. PARTIALLY OBSERVABLE MDPS NSW

Proof. We let ot = (os : s ≤ t), at = (as : s ≤ t) and at = a. We proceed
inductively. We take b0(x) = P(X0 = x|O0 = o0). Given bt(x) = b(x) =
P(x|ot,at−1), the next belief state bt+1 = b̂ can be calculated as follows:

b̂(x̂) = P(x̂|ô,ot,at)

= P(ô|x̂,ot,at)︸ ︷︷ ︸
P(ô|x̂)

·P(x̂|ot,at) ·
1

P(ô|ot,at)

= P(ô|x̂) ·
1

P(ô|ot,at)
·

∑
x

P(x̂|x,ot,at)︸ ︷︷ ︸
P(x̂|x,a)

P(x|ot,at)︸ ︷︷ ︸
b(x)

= P(ô|x̂)
∑

x P(x̂|x, a)b(x)
P(ô|ot,at)

The first equality above is Bayes rule. In the second equality we
note that ô is only dependent of x̂. The third equality again applies
conditional independence. The final expression gives the required
formula in 26.

By a similar calculation we can see that the denominator can be
calculated

P(ô|ot,at) =
∑

x̂

P(ô|x̂)
∑

x

P(x̂|x, a)b(x) =: P(ô|a, b) (29)

Thus we see that the required expression (26) holds

b̂(x̂) =
P(ô|x̂)

∑
x∈X P(x̂|x, a)b(x)

P(ô|a, b)
.

Thus if we are given a, b and ô we can calculate the next belief state.
Given a, b and ô, the value of b̂ is deterministic. We have also

calculated the probability of ô from a and b above (29). So given b,
a we can thus determine probability of b̂:

P(b̂|b, a) =
∑
ô∈Ω

P(b̂|b, a, ô)P(ô|b, a) .

where P(b̂|b, a,o) is the indicator function defined in 28. Note above
b summarizes all past actions and states. So the transitions on b
are now Markov. And the process described is a Markov decision
process.

88

0.8. PARTIALLY OBSERVABLE MDPS NSW

Finally we note that

E

 ∞∑
t=0

βtr(Xt, at)


= E

 ∞∑
t=0

βtE[r(Xt, at)|Ot = ot, ...,O0 = o0,At−1 = at−1, ...,A0 = a0]


= E

 ∞∑
t=0

βt
∑

x

bt(x)r(x, at)

 .
From this we can see (similar to discussions on MDPs) that an op-
timal policy only requires information summarized by the current
state bt in order to chose an action at time t. �

In general the reduction to belief states is conceptually useful.
The set of belief states is continuous and so we may have leave the
world of finite state Markov decision processes to solve problems of
this type. The use of Bayes rule above suggests a close link with
Bayesian statistics and statistics in general. From a practical stand-
point, although we can view a POMDP as an MDP it is often worth
developing specialized algorithms for the POMDP setting.

References.
The discussion on belief states is primarily based on the paper of
Kaelbling et al. [26]. However, the idea of belief states goes back
much earlier to Astrom [1] and Striebel [46]. A general discussion
and further reference can be found in [41]. From the above it is clear
that Bayesian interpretation of the update and this is regularly used
in the study of Hidden Markov Models see Cappe et al. [14] for a
text book reference. The update above simplifies significantly for
linear-quadratic optimizations. This is covered in our discussion
on the Kalman Filter and LQG and references therein.

89

0.9. LQR AND THE KALMAN FILTER NSW

0.9 LQR and the Kalman Filter

• Linear-Quadratic Regularization (LQR); Riccati Equation.

• Linear Quadratic Gaussian.

• Certainty Equivalence; Kalman Filter.

Linear Quadratic Regularization (LQR) is a special case of dy-
namic programming where we have a quadratic objective and a lin-
ear dynamic. [Note many smooth dynamics are linear over small
time steps and smooth objectives are quadratic close to their min-
imum.] LQR has a solution with a relatively simple form given by
the Riccati equation. It can be generalized in a few different ways:
random noise and incomplete state information. Even in these set-
tings the optimal control remain essentially the same. However,
with incomplete state information we may need to replace the state
variable, x with its mean, x̄. This is called certainty equivalent con-
trol. If noise is Gaussian, then estimating x is a relatively straight
forward recursion which is given by the Kalman filter. We define
and discuss each of these steps in subsequent sections below.

Linear Quadratic Regularization.
The objective below is quadratic and its constraints are linear. For
this reason, this problem is called a Linear Quadratic Regulator
problem and its solution is a Linear Quadratic Regular (LQR).

Def 81 (Linear Quadratic Regularization). We consider the following
optimization:

L0(x0) =minimize
T−1∑
t=0

{
x>t Rxt + a>t Qat

}
+ x>T RxT (LQR)

subject to xt = Axt−1 + Bat−1, t = 1, ...,T
over a0, ...,aT−1 ∈ R

m

Here the actions a belong to Rm and the states x belong to Rn. Here A
and B are matrices and R and Q are positive semi-definite matrices.16

16Recall, a matrix M is positive semi-definite if x>Mx > 0 for x , 0.

90

0.9. LQR AND THE KALMAN FILTER NSW

Why LQR? This optimization is very common in control. This is
because many dynamical systems are approximately linear [over
small time steps] and many [smooth] objectives are approximately
quadratic when close to their minima. So a wide variety of control
problems are approximately LQR problems.

Riccati Equation. An important recursion that is needed to solve
LQR problems is the Riccati Equation:

Def 82 (Riccati Equation and Gain Matrix). The Riccati equation is
the following matrix recursion

Λt = R + A>Λt+1A − A>Λt+1B[Q − B>Λt+1B]−1B>Λt+1A (Riccati)

for t = 0, ...,T − 1 and with ΛT = R. The gain matrix is defined to be

Gt = [Q + B>ΛtB]−1B>ΛtA (Gain)

From this a = −Gtx gives the optimal control at time t.

Solution for LQR. We let Vτ(x) be the optimal solution to (LQR),
where the summation is started from time t = τ in state xτ = x. The
following result gives the solution to an LQR problem.

Thrm 83. The value function for (LQR) satisfies

Lt(x) = x>Λtx

where Λt is the solution to the Riccati Equation, see (Riccati). More-
over, the optimal control action is given by

a?t = −Gtxt

where G is the Gain Matrix, see (Gain).

Proof. The Bellman equation is

Lt−1(x) = min
a

{
x>Rx + a>Qa + Lt(Ax + Ba)

}
We now argue by induction that Lt(x) = x>Λtx for all t. This is
certainly true at time T where LT(x) = x>Rx.

Assuming by induction that Lt(x) = x>Λtx, we have that

Lt−1(x) = min
a

{
x>Rx + a>Qa + (Ax + Ba)>Λt(Ax + Ba)

}
= min

a

{
x>Rx + a>Qa + x>A>ΛtAx + 2a>B>ΛtAx + a>B>ΛtBa

}
.

91

0.9. LQR AND THE KALMAN FILTER NSW

Differentiating the above objective with respect to a and setting
equal to zero, minimizes the above objective and gives the condi-
tion

0 = 2Qa + 2B>ΛtAx + 2B>ΛtBa

This implies that the optimal action is

a? = −[Q + B>ΛtB]−1B>ΛtAx .

In other words we see that a?t = −Gtxt, as require above. However,
we still need to verify that Vt−1(x) = x>Λt−1x holdsfr to complete the
induction step. Substituting our expression for a? into the above
minimization gives.

Lt−1(x) = x>Rx + x>A>ΛtAx + a?>Qa? + 2a?>B>ΛtAx + a?>B>ΛtBa?

= x>Rx + x>A>ΛtAx − x>A>ΛtB[Q + B>ΛtB]−1B>ΛtAx
= x>Λt−1x

where the last inequality follows by our definition of Λt−1 and gives
the required Riccati equation. �

LQR with Noise.
We consider a variation on the LQR problem. In particular we as-
sume that xt is now randomly perturbed by some additional noise
εt−1. We consider following optimization:

L0(x0) =minimize
T−1∑
t=0

{
x>t Rxt + a>t Qat

}
+ x>T RxT (Noisy LQR)

subject to xt = Axt−1 + Bat−1 + εt−1, t = 1, ...,T
over a0, ...,aT−1 ∈ R

m

The only change with respect to (LQR) is that we add a random
variable εt−1. Here we assume that εt is independent over time and
has mean zero and covariance matrix N. That is

E[εt] = 0 and E[ε>t εt] = N.

The next result shows that the optimal control remains the same
when we add noise, only the value function changes a bit.

92

0.9. LQR AND THE KALMAN FILTER NSW

Thrm 84. The optimal control for the noisy LQR problem is identical
to the LQR problem [without noise] in Theorem 83 that is

a?t = Gtxt

where Gt is the Gain matrix defined in Gain . The value function now
has the form

Lt(x) = x>Λtx + γt

where γt−1 = tr(ΛtN) + γt and γT = 0.

Proof. The Bellman equation is

Lt−1(x) = min
a

{
x>Rx + a>Qa + E[Lt(Ax + Ba + ε)]

}
.

We now argue by induction that Lt(x) = x>Λtx + γt for all t. This is
certainly true at time T where LT(x) = x>Rx.

Assuming by induction that Lt(x) = x>Λtx + γt, we have that

Lt−1(x) = min
a

{
x>Rx + a>Qa + E[(Ax + Ba + ε)>Λt(Ax + Ba + ε)] + γt

}
= min

a

{
x>Rx + a>Qa + x>A>ΛtAx + 2a>B>ΛtAx + a>B>ΛtBa

}
+ E[ε>Λtε] + γt

First, observe the minimization above is identical to the LQR min-
imization in Theorem 83, and so equals x>Λt−1x by the proof given
in Theorem 83. Second observe, a quick calculation shows that

E[ε>Λtε] =
∑

i j

E[εiε jΛt,i j] = tr(NΛ).

Thus γt + E[ε>Λtε] = γt−1 as defined above. These two observations
give that

Lt−1(x) = x>Λt−1x + γt−1

as required. �

Linear Quadratic Gaussian.
We consider a Linear Quadratic Regularization problem but were
there is both noise and imperfect state observation. In particular,

93

0.9. LQR AND THE KALMAN FILTER NSW

we do not directly observe the state x but instead some measure-
ment y which we must use to control x. Further both x and y are
subject to noise.

L0(x0) =minimize
T−1∑
t=0

{
x>t Rxt + a>t Qat

}
+ x>T RxT (LQG)

subject to xt = Axt−1 + Bat−1 + εt−1,

yt = Cxt−1 + δt−1 t = 1, ...,T
over a0, ...,aT−1

In addition to the terms in the definition of LQR and LQRwith Noise,
we introduce a matrix C and a noise term δt which is independent
over time, has mean zero and covariance M. That is

E[δ] = 0, and E[δδ>] = M .

Later [when considering the Kalman Filter], we will need the ran-
dom variables for δ and ε to be Gaussian [hence the name LQG] but
we do not require this assumption yet.

Here the state x is not directly observed. So we must base deci-
sions from data of past decision and measurements, that is

Ft = (yt, ...,y1,at−1, ...,a0) .

Result on LQG. The key result on LQG is that if we can estimate
the mean state given Ft, i.e. xt := E[x|Ft], then the optimal control
is that same as from the LQR problem i.e. a? = −Gx̄t.

Thrm 85. For an LQG problem the optimal control at time t is

a?t = −Gtx̄t

where x̄t = E[xt|Ft] and Gt is the Gain matrix (Gain). Further, the
optimal value function is

Lt(Ft) = E[x>t Λtxt|Ft] + It + γt

where

It =

T−1∑
τ=t

E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ|Ft

]
and ∆t = xt − x̄t .

94

0.9. LQR AND THE KALMAN FILTER NSW

Before proving this result, we take a moment to discuss.

Certainty Equivalence. The last result is interesting because even
though there is noise and we do not observe the system state. We
still apply the same control as in the case where we have full infor-
mation for a deterministic system. When we treat the mean as if it
was the "true" state, we call this certainty equivalence.

In general applying a certainty equivalent estimate is not opti-
mal, but it is for LQG systems. So why is certainty equivalence
optimal here. In particular, if we look at the new term It in the
value function, it looks like we need to estimate future values of ∆τ

which in principle should depend on the future actions and states
that we visit. This would likely make for a complex dependence on
the current action taken. However, it turns out, because the prob-
lem is linear, that ∆t does not depend on the actions taken. So in
the Bellman equation It is effectively a constant as far as the action
taken is concerned. This simplifies the problem considerably and
means we are still within the scope of our original LQR solution.

The following lemma shows that ∆t does not depend on actions
taken and states visited.

Lemma 7. ∆τ is a constant with respect to a0, ...,aτ.

Proof. We recursively consider the update equation for xτ. Note that

xτ = Axτ−1 + Baτ−1 + ετ−1

= A[Axτ−2 + Baτ−2 + ετ−2] + Baτ−1 + ετ−1

= A2xτ−2 + ABaτ−2 + Baτ−1 + Aετ−2 + ετ−1

...

= Aτx0 +

τ−1∑
t=0

Aτ−1−tBat +

τ−1∑
t=0

Aτ−1−tεt .

Consequently notice,

x̄τ = E[xτ|Fτ] = Aτx0 +

τ−1∑
t=0

Aτ−1−tBat + E
[τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣Fτ]
So

xτ − x̄τ =

τ−1∑
t=0

Aτ−1−tεt − E
[τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣Fτ] .
95

0.9. LQR AND THE KALMAN FILTER NSW

It seems like we are done, we have removed all dependence on the
actions taken. But remember Ft = (yt, ...,y1,at−1, ...,a0) which we con-
dition on above. In principle, we could modify the set of actions that
we take to infer information about

∑τ−1
t=0 Aτ−1−tεt and thus there would

be dependence on the actions taken in the conditional expectation
above. However, fortunately, this turns out not to be the case.

To see this, first, let y0
t be the sequence of observations made

when actions are chosen to be zero. That is, when

yt = Cxt = CAτx0 +

τ−1∑
t=0

CAτ−1−tBat +

τ−1∑
t=0

CAτ−1−tεt

then y0
t is given by

y0
t = CAτx0 +

τ−1∑
t=0

CAτ−1−tεt + δt .

Since we know which actions are taken, we can always construct y0
t

from yt and vice versa. I.e. conditioning on Ft = (yt, ...,y1,at−1, ...,a0)
is the same as conditioning on F0

t = (y0
t , ...,y

0
1 ,at−1, ...,a0). Further,

suppose we let π be the policy that we use to select the actions. In
particular, suppose that at = π(Ft) where here π is some determinis-
tic function. However given the discussion above, equally we could
view actions as a function of F0

t , that is at = π0(F0
t) where π0 is again a

deterministic. Thus all information required to choose each action
is determined by the function π0 and the vectors (y0

t , ...,y
0
1). In other

words, conditioning on F0
t is the same as conditioning on (y0

t , ...,y
0
1)

and the deterministic function π0. However, π0 is deterministic and
thus independent of the random variable

∑τ−1
t=0 Aτ−1−tεt, thus it plays

no role in determining its conditional expectation. In summary we
have found that

E
[τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣Fτ] = E
[τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣F0
τ

]
= E

[τ−1∑
t=0

Aτ−1−tεt

∣∣∣∣∣y0
t , ...,y

0
1 , π

0
]

= E
[τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣y0
t , ...,y

0
1

]
The right hand expression does not depend on the action taken and
so the same is true of

xτ − x̄τ =

τ−1∑
t=0

Aτ−1−tεt − E
[τ−1∑

t=0

Aτ−1−tεt

∣∣∣∣∣Fτ] .
96

0.9. LQR AND THE KALMAN FILTER NSW

�

A further more minor observation is the following Lemma.

Lemma 8.
E[x>t Mxt|Ft] = x̄>t Mx̄t + E[∆>t M∆t|Ft]

Proof.

E[x>t Mxt|Ft] = E[(x̄t + ∆)>M(x̄t + ∆)|Ft]
= x̄>t Mx̄t + 2x̄tME[∆t|Ft] + E[x>t Mxt|Ft]
= x̄>t Mx̄t + E[∆>t M∆t|Ft]

�

Note this lemma is essentially just Var(X) = E[X2] − E[X]2.

Proof of Theorem 85. We can now use the above lemma to prove
Theorem 85.

Proof of Theorem 85. The result of the Theorem is certainly true at
time T, where L(FT) = x>T RxT. Let’s work back inductively assuming
the form Lt+1(Ft+1) holds.

Lt(Ft) = min
at
E[x>t Rxt + a>t Qat + Lt+1(Ft+1)|Ft]

= min
at
E
[
x>t Rxt︸ ︷︷ ︸

(a)

+a>t Qat + E
[
x>t+1Λt+1xt+1|Ft+1

]
︸ ︷︷ ︸

(b)

+ It+1 + γt+1︸ ︷︷ ︸
(c)

∣∣∣Ft

]

Let’s deal with the three terms (a), (b) and (c) above.
Firstly, for (a) we have by Lemma 8 that

E[x>t Rxt|Ft] = x̄>t Rx̄t + E[∆>t R∆t|Ft]

Second, for term (b):

E
[
x>t+1Λt+1xt+1

∣∣∣Ft+1

]
= E

[
(Axt + Bat + εt)>Λt+1(Axt + Bat + εt)

∣∣∣Ft+1

]
= E[x>t A>Λt+1Axt|Ft] + 2x̄tA>Λt+1Bat + atB>Λt+1Bat + tr(NΛt+1)
= x̄>t A>Λt+1Ax̄t + E[∆>t A>Λt+1A∆t|Ft]

+ 2x̄tA>Λt+1Bat + atB>Λt+1Bat + tr(NΛt+1)

97

0.9. LQR AND THE KALMAN FILTER NSW

Third, for term (c),

E[It+1 + γt+1|Ft] =

T−1∑
τ=t+1

E
[
E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ

∣∣∣Ft+1

]∣∣∣∣Ft

]
+ γt+1

=

T−1∑
τ=t+1

E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ

∣∣∣∣Ft

]
+ γt+1 .

Applying the last three terms to Lt(Ft), above, we get that

Lt(Ft)
= min

a

{
x̄>t Rx̄t + a>Qa + x̄>t A>Λt+1Ax̄t + 2a>B>Λt+1Ax̄t + a>B>Λt+1Ba

}
+ E[∆>t [R + A>Λt+1A]∆t|Ft] +

T−1∑
τ=t+1

E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ

∣∣∣∣Ft

]
+ tr(NΛt+1) + γt+1

Critically, we have applied Lemma 7, to take terms involving ∆t from
the minimization. An important consequence is that the minimiza-
tion above is the same as for deterministic LQR problems. So the
optimal control is a?t = −Gtx̄t, by the same calculation done in The-
orem 83. So it is equal to x̄>t Λtx̄t. So applying this and Lemma 8,
i.e. that x̄tΛtx̄t = E[x>t Λtxt|Ft] − E[∆>t Λt∆t|Ft]. This gives that

Lt(Ft)
= E[x>t Λtxt|Ft]

+ E[∆>t [R + A>Λt+1A −Λt]∆t|Ft] +

T−1∑
τ=t+1

E
[
∆>τ (R + A>Λτ+1A −Λτ)∆τ

∣∣∣∣Ft

]
+ tr(NΛt+1) + γt+1

= E[x>t Λtxt|Ft] + It + γt ,

where we apply the definitions of It and γt. This gives the required
expression of Lt(Ft). �

Kalman Filter
Kalman filtering (and filtering in general) considers the following
setting: we have a sequence of states xt, which evolves under ran-
dom perturbations over time. Unfortunately we cannot observe xt,

98

0.9. LQR AND THE KALMAN FILTER NSW

we can only observe some noisy function of xt, namely, yt. Our task
is to find the best estimate of xt given our observations of yt.

For LQG we saw that we needed to have the estimate x̂t to make
an optimal control decision. Assuming that perturbations are Gaus-
sian, the Kalman filter can correctly iteratively calculate the mean
of xt, x̂t, and its variance.

Consider the equations

xt+1 = Axt + Bat + εt

yt+1 = Cxt+1 + δt+1 .

where εt ∼ N(0,Σε), δt+1 ∼ N(0,Σδ) and εt and νt are independent. (We
let Σε be the sub-matrix of the covariance matrix corresponding to
ε and so forth...)

The Kalman filter has two update stages: a prediction update
and a measurement update. These are

x̄t+1 | t = Ax̄t | t + Bat , (Predict-1)
Pt+1 | t = APt | tA> + Σε

t , (Predict-2)

and

x̄t+1 = x̄t+1 | t + Kt(yt+1 − Cx̄t+1 | t) , (Measure-1)
Pt+1 = Pt+1 | t − KtCPt+1 | t , (Measure-2)

where

Kt = Pt+1 | tC>(CPt+1|tC> + Σδ
t) .

The matrix Kt is often referred to as the Kalman Gain. Assuming
the initial state x0 is known and deterministic P0|0 = 0 in the above.

We will use the following proposition, which is a standard re-
sult on normally distributed random vectors, variances and covari-
ances,

Prop 86. Let u be normally distributed vector with mean ū and co-
variance Σu, i.e.

u ∼ N(ū,Σu) .

i) For any matrix A and (constant) vector c, we have that

Au + c ∼ N(Aū + c,AΣuA>) .

ii) If we take u = (v,w) then w conditional on v is

(w|v) ∼ N(w̄ + ΣwvΣ
−1
vv (v − v̄),Σww − ΣwvΣ

−1
vv Σvw)

iii) Var(Au) = AΣuA>, Cov(Au,Bu) = AΣuB>.

99

0.9. LQR AND THE KALMAN FILTER NSW

We can justify the Kalman filtering steps by proving that the
conditional distribution of xt+1 is given by the Prediction and mea-
surement steps. Specifically we have the following.

Thrm 87.

(xt+1|y[0:t],a[0:t]) ∼ N(x̄t+1|t,Pt+1|t)
(xt+1|y[0:t+1],a[0:t]) ∼ N(x̄t+1,Pt+1)

where y[0:t] := (y0, ...,yt) and a[0:t] := (a0, ...,at). Thus

E[xt+1|Ft+1] = x̄t+1

where x̄t+1 is given by (Measure-1).

Proof. We show the result by induction supposing that

(xt|y[0:t],a[0:t−1]) ∼ N(x̄t,Pt) .

Since xt+1 is a linear function of xt, we have that

(xt+1|y[0:t],a[0:t]) ∼ N(x̄t+1|t,Pt+1|t) .

where, by Prop 86ii), we have that

x̄t+1|t = Ax̄t + Bat , Pt+1|t = APtA> + Σε .

Given yt+1 = Cxt+1 +δt, we have by Prop 86iii) that Var(yt+1|y[0,t],a[0,t]) =
CPt+1|tC> and Cov(xt+1,yt+1|y[0,t],a[0,t]) = Pt+1|tC>. Thus

((xt+1,yt+1)|y[0:t],a[0:t]) ∼ N
(
(x̄t+1|t,Cx̄t+1|t),

(
Pt+1|t Pt+1C>

CPt+1|t CPt+1C> + Σδ
t

)]
.

Thus applying Prop 86ii), we get that

(xt+1|y[0:t+1], a[0:t]) = ((xt+1|y[0:t], a[0:t])|yt+1)

∼ N

(
x̄t+1|t + Pt+1|tC>[CPt+1C> + Σδ

t]−1(yt+1 − Cx̄t+1|t) ,

Pt+1|t − Pt+1|tC>[CPt+1|tC> + Σδ
t]−1CPt+1|t

)
.

That is, as required, (xt+1|y[0:t+1],a[0:t]) ∼ N(x̄t+1,Pt+1) for

x̄t+1 = x̄t+1 | t + Kt(yt+1 − Cx̄t+1 | t)
Pt+1 = Pt+1 | t − KtCPt+1 | t

where Kt = Pt+1 | tC>(CPt+1|tC> + Σδ
t) . �

100

0.9. LQR AND THE KALMAN FILTER NSW

Exercises
Ex 88 (Joint state-action costs). Suppose we consider an LQR prob-
lem whose objective is

T−1∑
t=0

(xt,at)D(xt,at)> + x>T RxT

where

D =

(
R U

U> Q

)
then show that the Riccati equation becomes

Λt = R + A>Λt+1A − (A>Λt+1B + U)[Q − B>Λt+1B]−1(B>Λt+1A + U)

for t = 0, ...,T − 1 and with ΛT = R. The gain matrix is defined to be

Gt = [Q + B>ΛtB]−1(B>ΛtA + U)

References
Bucy and Kalman developed the Kalman filter [13]. It is used exten-
sively in control theory, for a recent text see Grenwal and Andrews
[21]. For a machine learning and Bayesian perspective see Murphy
[35].

101

Chapter 1

Continuous Time Control

102

1.1. CONTINUOUS TIME DYNAMIC PROGRAMMING NSW

1.1 Continuous Time Dynamic Programming

• The Hamilton-Jacobi-Bellman equation; a heuristic derivation;
and proof of optimality.

• Linear Quadratic Regularization.

Discrete time Dynamic Programming was given in Section 0.1. We
now consider the continuous time analogue.

Time is continuous t ∈ R+; xt ∈ X is the state at time t; at ∈ A is
the action at time t; Given function f : X×A → X, the state evolves
according to a differential equation

dxt

dt
= f (xt, at). (1.1)

This is called the Plant Equation. A policy π chooses an action πt

at each time t. The (instantaneous) cost for taking action a in state
x at time t is c(a, x) and c(x) is the reward for terminating in state x
at time T.

Def 89 (Dynamic Program). Given initial state x0, a dynamic program
is the optimization

L(x0) := Minimize C(a) :=
∫ T

0
e−αtc(xt, at)dt + e−αTc(xT) (DP)

subject to
dxt

dt
= f (xt, at), t ∈ R+

over at ∈ A, t ∈ R+

Further, let Cτ(a) (Resp. Lτ(xτ)) be the objective (Resp. optimal objec-
tive) for (1.1) when the summation is started from t = τ, rather than
t = 0.

When a minimization problem where we minimize loss given the
costs incurred is replaced with a maximization problem where we
maximize winnings given the rewards received. The functions L, C
and c are replaced with notation W, R and r.

103

1.1. CONTINUOUS TIME DYNAMIC PROGRAMMING NSW

Def 90 (Hamilton-Jacobi-Bellman Equation). For a continuous-time
dynamic program (1.1), the equation

0 = min
a∈A

{
c(x, a) + ∂tLt(x) + f (x, a)∂xLt(x) − αLt(x).

}
(HJB)

is called the Hamilton-Jacobi-Bellman equation. It is the continuous
time analogoue of the Bellman equation [2].

A Heuristic Derivation of the HJB Equation

We now argue why the Hamiliton-Jacobi-Bellman equation is a good
candidate for the Bellman equation in continuous time.

A good approximation to the plant equation (1.1) is

xt+δ − xt = δ f (xt, at) (1.2)

for δ > 0 small, and a good approximation for the objective is

C(a) :=
∑

t∈{0,δ,...,(T−δ)}

(1 − αδ)t/δc(xt, at)δ + (1 − αδ)t/δc(xT) (1.3)

This follows from the definition of the Riemann Integral and we fur-
ther use the fact that (1 − αδ)t/δ

→ e−αt as δ→ 0.
The Bellman equation for the discrete time dynamic program

with objective (1.3) and plant equation (1.2) is

Lt(x) = min
a∈A

{
c(x, a)δ + (1 − αδ)Lt+δ(xt + δ f (x, a))

}
If we minus Lt(x) from each side in this Bellman equation and

then divide by δ and let δ→ 0 we get that

0 = min
a∈A

{
c(x, a) + ∂tLt(x) + f (x, a)∂xLt(x) − αLt(x) ,

}
where here we note that, by the Chain rule,

(1 − αδ)Lt+δ(x + δ f) − Lt(x)
δ

−−−→
δ→0

∂tLt(x) + f (x, a)∂xLt(x) − αLt(x).

Thus we derive the HJB equation as described above.

The following result shows that if we solve the HJB equation then
we have an optimal policy.

104

1.1. CONTINUOUS TIME DYNAMIC PROGRAMMING NSW

Thrm 91 (Optimality of HJB). Suppose that a policy Π has a value
function Ct(x,Π) that satisfies the HJB-equation for all t and x then,
Π is an optimal policy.

Proof. Using shorthand C = Ct(x̃t,Π):

−
d
dt

(
e−αtCt(x̃t,Π)

)
= e−αt {c(x̃t, π̃t) −

[
c(x̃t, π̃t) − αC + f (x̃t, π̃t)∂xC + ∂tC

]}
≤ e−αtc(x̃t, π̃t)

The inequality holds since the term in the square brackets is the
objective of the HJB equation, which is not maximized by π̃t. �

105

1.1. CONTINUOUS TIME DYNAMIC PROGRAMMING NSW

Linear Quadratic Regularization
Def 92 (LQ problem). We consider a dynamic program of the form

Minimize
∫ T

0
[xtQxt + atRat] dt + xTQTxT (LQ)

subject to
dxt

dt
= Axt + Bat, t ∈ R+

over at ∈ R
m, t ∈ R+.

Here xt ∈ Rn and at ∈ Rm. A and B are matrices. Q and R symmet-
ric positive definite matrices. This an Linear-Quadratic problem (LQ
problem).

Def 93 (Riccarti Equation). The differential equation with

Λ̇(t) = −Q−Λ(t)A−A>Λ(t) + Λ(t)BR−1B>Λ(t) and Λ(T) = QT. (RicEq)

is called the Riccarti equation.

Thrm 94. For each time t, the optimal action for the LQ problem is

at = −R−1B>Λ(t)xt ,

where Λ(t) is the solution to the Riccarti equation.

Proof. The HJB equation for an LQ problem is

0 = min
a∈Rm

{
x>Qx + a>Ra + ∂tLt(x) + (Ax + Ra)>∂xLt(x)

}
We now “guess" that the solution to above HJB equation is of the
form Lt(x) = x>Λ(t)x for some symmetric matrix Λ(t). Therefore

∂xLt(x) = 2Λ(t)x and ∂tLt(x) = x>Λ̇(t)x

Substituting into the Bellman equation gives

0 = min
a∈Rn

{
x>Qx + a>Ra + x>Λ̇(t)x + 2x>Λ(x)(Ax + Ba)

}
.

Differentiating with respect to a gives the optimality condition

2Ra + 2x>Λ(t)B = 0

which implies
a = −R−1B>Λ(t)x .

106

1.1. CONTINUOUS TIME DYNAMIC PROGRAMMING NSW

Finally substituting into the Bellman equation, above, gives the ex-
pression

0 = x>
[
Q + Λ̇(t) + Λ(t)A + A>Λ(t) −Λ(t)BR−1B>Λ(t)

]
x .

Thus the solution to the Riccarti equation has a cost function that
solves the Bellman equation and thus by Theorem 91 the policy is
optimal. �

107

1.2. CALCULUS OF VARIATIONS NSW

1.2 Calculus of Variations
We have developed the HJB equation. In this section we develop and
alternative view of minimize the integral of costs. This is the called
the calculus of variations and it goes back to the early days of cal-
culus. Here we can see where the Hamilton and Jacobi come in the
name Hamilton-Jacobi-Bellman Equation. It also helps us under-
stand the Pontrygin’s Maximum Principle in Section ??, which can
be seen as a calculus of variations characterization of continuous
time optimal control.

We provide now provide a different approach to minimizing (or
maximizing) the objective

C(x) =

∫ T

0
c(t, x(t), ẋ(t))dt (1.4)

with boundary conditions

x(0) = x0 and x(T) = xT , (1.5)

where x0 and xT are constants. As in previous sections, we let

L(t, x) = min
∫ T

t
c(s, x(s), ẋ(s))ds (1.6)

where we minimize over paths satisfying our boundary conditions.
(That is x(t) = x and x(T) = xT.)

We can interpret the above objective as a continuous time control
problem, as discussed in Section 1.1, but where the actions can be
freely chosen to induce any change in x that we like. So our action
at each state is the velocity i.e. ẋ(t) = f (x, a) = a with a ∈ Rd. Since
our action has a very direct interpretation as velocity, we will use v
as an index, for example, costs are c(t, x, v).

Remark 95 (Lagrangian Mechanics). We do not concern ourselves
with the underlying physics here, but it is worth noting that many
physically systems can be seen to minimize an objective (1.4). This
is often referred to as Lagrangianmechanics, and can be seen as a re-
formulation of classical mechanics (e.g. from Newton). In this context,
the cost function c(t, x, v) is often called the Lagrangian.1 However, in
this text, we only refer to the Lagrangian when Lagrange multipliers
are used, as discussed in Section A.7.

1In physics literature letter L is often used rather than c. However, to be con-
sistent with earlier section, we c for cost and L for optimal loss.

108

1.2. CALCULUS OF VARIATIONS NSW

The Euler-Lagrange Equation
Specifically, we can characterize stationary points with the Euler-
Lagrange equation:

Definition 2 (Euler-Lagrange Equation). For a continuously differ-
entiable real-valued function c(t, x, v) and a continuously differentiable
function x(t),

∂c
∂x
−

d
dt
∂c
∂v

= 0

By a stationary point, we mean the following.

Definition 3 (Stationary Point). We say that a continuously differen-
tiable real-valued function x is a stationary point of (1.4), if it satisfies
the boundary condition (1.5) and for any continuously differentiable
z : [0,T]→ R satisfying z(0) = z(T) = 0 it holds that

C(x + εz) = C(x) + o(ε) ,

as ε→ 0.

Given that C(x) changes smoothly with x, a local maximum or min-
imum of the objective must be a stationary point.

We see that the Euler-Lagrange equation characterizes station-
ary points.

Theorem 5. Any stationary point of the objective (1.4) satisfies the
Euler-Lagrange equation

∂c
∂x
−

d
dt
∂c
∂v

= 0

Proof. Suppose x(t) is stationary and let z(t) be continuously differ-
entiable with z(0) = z(T) = 0 then, for ε > 0,

C(x + εz) =

∫ T

0
c(t, x(t) + εz(t), ẋ(t) + εż(t))dt

=

∫ T

0
c(t, x, ẋ) + εz(t)∂xc(t, x, ẋ) + εż(t)∂vc(t, x, ẋ) + o(ε)dt

= C(x) + o(ε) + ε

∫ T

0
z(t)∂xc(t, x, ẋ)dt + ε

∫ T

0
ż(t)∂vc(t, x, ẋ)dt .

(1.7)

109

1.2. CALCULUS OF VARIATIONS NSW

Since x(t) is stationary, C(x + εz) − C(x) = o(ε). So, we see that

o(ε) =

∫ T

0
εz(t)∂xc(t, x, ẋ) + εż(t)∂vc(t, x, ẋ)dt .

Dividing by ε and letting ε→ 0 gives that

0 =

∫ T

0
z(t)∂xc(t, x, ẋ)dt +

∫ T

0
ż(t)∂vc(t, x, ẋ)dt (1.8)

Applying integration-by-parts to the final integral on the right,∫ T

0
ż(t)∂vc(t, x, ẋ)dt =

∫ T

0
z(t)

d
dt
{∂vc(t, x, ẋ)} dt + [z(t)∂vc(t, x, ẋ)]T

0

=

∫ T

0
z(t)

d
dt
{∂vc(t, x, ẋ)} dt (1.9)

The term in the square brackets is zero since z(0) = z(T) = 0. Thus
substituting (1.9) into the righthand term in (1.8) gives that∫ T

0
z(t)

[
∂xc(t, x, ẋ) +

d
dt
∂vc(t, x, ẋ)

]
dt

Since the above condition must holds for all functions z(t), it must
be that the term in square-brackets is zero. That is, for all t,

∂xc(t, x, ẋ) +
d
dt
{∂vc(t, x, ẋ)} = 0

as required. �

We can use Euler-Lagrange equations to show results such as
the following:

Proposition 2.

∂xL = −∂vc

Proof. We let x(t) be the optimal solution started from x and x(t)+εz(t)
be the optimal solution started from x+ε.2 Note since both solutions

2Here we are assuming that optimal solutions change smoothly.

110

1.2. CALCULUS OF VARIATIONS NSW

end at xT, z(t) = 0 and z(T) = 1. By an identical Taylor expansion to
the argument that gave (1.7), we have that

L(t, x + ε) − L(t, x) = ε

∫ T

t
z(s)∂xc(s, x, ẋ) + ż(s)∂vc(s, x, ẋ)ds + o(1) .

Since x(t) obeys the Euler-Lagrange equations ∂xc = d(∂cv)/dt. So

ε−1[L(t, x + ε) − L(t, x)] =

∫ T

t
z(s)

d
ds

[∂vc(s, x, ẋ)] +
dz
ds
∂vc(s, x, ẋ)ds + o(1)

=

∫ T

t

d
ds

[z(s)∂vc(s, x, ẋ)] ds + o(1)

= z(T)∂vc(T, x, ẋ) − z(t)∂vc(t, x, ẋ) + o(1)
= −∂vc(t, x, ẋ) + o(1) .

Letting ε→ 0 now gives the result. �

The Hamilton-Jacobi Equation.
Just as there is a Lagrangian formulation of mechanics. There is
a Hamilton-Jacobi formulation. There are multiple equations asso-
ciated with this. But one that stands out from an optimal control
perspective is that the optimal solution to (1.6) satisfies

∂tL + min
v
{c(t, x, v) + v∂xL} = 0 (1.10)

This is called the Hamilton-Jacobi Equation, and the minimiza-
tion term above is called the Hamiltonian. Notice this is basically
the same as the HJB equation. (This a connection first made by
Kalman, see references.) We will discuss this in more detail now
and then prove that the equation holds.

Definition 4 (Hamiltonian). The Hamiltonian and is defined

H(t, x, ρ) := min
v

{
c(t, x, v) − ρv

}
The term ρ is often called the momentum.

A few observations on the Hamiltonian:

• The above supremum is maximized at

ρ = ∂vc(t, x, v) .

(So Proposition 2 now states that ∂xL(t, x) = −ρ(t))

111

1.2. CALCULUS OF VARIATIONS NSW

• So, with (t, x) fixed, for each velocity v, we can define a momen-
tum ρ. Further if v 7→ ∂vc(t, x, v) is increasing, then for each
momentum ρ we can define a velocity v. Thus a one-to-one
correspondence between velocity and momentum is often as-
sumed.3

• Notice by Proposition 2, the optimal solution satisfies

H(t, x(t), ρ(t)) = −ẋ∂vc(t, x, ẋ) + c(t, x, ẋ)
= c(t, x, ẋ) + ẋ∂xL (1.11)

(Thus the Hamiltonian is the term in square bracket in the
Hamilton-Jacobi Equation (1.12))

• Notice ρ 7→ −H(t, x, ρ) is the Legendre transform of v 7→ c(t, x, v).
Specifically,

−H(t, x, ρ) = sup
v

{
ρv − c(t, x, v)

}
Given c(t, x, a) is convex in a then there a lots of nice properties
associated with this. For instance

c(t, x, v) = sup
ρ

{
ρx + H(t, x, ρ)

}
and ∂vc(t, x, ·) is the inverse of ∂ρH(t, x, ·).

We can now show that the Hamilton-Jacobi equation (1.12) holds.

Theorem 6. The optimal solution to the calculus of variations prob-
lem (1.6) satisfies the Hamilton-Jacobi equation:

∂tL + H = 0 . (1.12)

Proof. Applying the chain rule to L(t, x(t)) gives

dL
dt

= ∂tL + ẋ∂Lx .

By the Fundamental Theorem of Calculus, we know dL
dt = −c(t, x, ẋ).

So applying this to the above equality gives,

∂tL = −ẋ∂xL − c .

Thus by (1.11), ∂tL + H = 0, as required. �

3Though formally we need v 7→ c(t, x, v) to be convex in v for this to work.

112

1.3. PONTYAGIN’S MAXIMUM PRINICPLE NSW

1.3 Pontyagin’s Maximum Prinicple
We consider a continuous time dynamic program as described in
Definition 89. That is we aim to solve

L(x0) = min
a(t) : t≥0

∫ T

0
c(x(t), a(t))dt + κ(x(T)) s.t. ẋ(t) = f (x(t), a(t)) .

Here we do not assume that T is a fixed constant. Instead we as-
sume that T is the first time that x(t) visits a set S. We note that in
this case the HJB equation is given by

0 = min
a

{
c(x, a) + f (x, a)∂xL

}
for x < S,

L(x) = c(x) for x ∈ S .

As given in our discussion on Hamiltonian’s in Section 1.2, the Pon-
tryagin approach considers the Hamiltonian

H(x, a, λ) = λ> f (x, a) − c(x, a) .

Theorem 7 (Pontryagin’s Maximum Principle). If x(t) and a(t) are the
optimal state and control functions, then

.

λ(t) = −∂xH (1.13)
ẋ(t) = ∂λH (1.14)

and

0 = H(x(t), a(t), λ(t)) = max
a

H(x(t), a, λ(t)) (1.15)

and at time T

λ(T) = −∂xκ(x(T)) .

We give an informal proof to get the main ideas across. We refer the
reader to [32] for instance for a fuller account of the original proof.

Sketch Proof. Throughout the proof we let

λ(t) = ∂xL(x(t)) .

Note that the condition ẋ(t) = ∂λH just states that ẋ(t) = f (x(t), a(t)),
which is the required dynamics of our model.

113

1.3. PONTYAGIN’S MAXIMUM PRINICPLE NSW

Given λ(t) as defined above, the condition (1.15) states that

0 = c(x(t), a(t)) + f (x(t), a(t))∂xL = min
a

{
c(x, a) + f (x, a)∂xL

}
which is just the HJB equation above.

For the condition on the change in λ(t), we Taylor expand the
value function over a time-step of size ε > 0 started from state x
taking action a at time t

L(x) = εc(x, a) + L(x + f (x, a)ε) + o(ε) .

Differentiating with respect to x gives

d
dx

L(x) = ε
d

dx
c(x, a) + ∂xL(x + f (x, a)ε)

d
dx
{x + f (x, a)ε} + o(ε) .

Since λ(t) = ∂xL(x(t)) and λ(t + ε) = ∂xL(x + f (x, a)ε),+o(ε) it holds that

−λ(t) = ε
d

dx
c(x, a) + λ(t + ε) + λ(t + ε) · ∂x f (x, a)

which after rearranging and letting ε go to zero gives
.

λ(t) = ∂xc(x, a) − λ(t)∂x f (x, a) = −∂xH

�

Given the proof above we see that (1.14) accounts for the dy-
namics of system, (1.13) shows that we consider an objective that
is summing costs and (1.15) ensures that the actions that we are
taking are maximizing (the HJB-equation).

114

1.4. STOCHASTIC INTEGRATION NSW

1.4 Stochastic Integration

• Heuristic derivation of the Stochastic Integral and Itô’s for-
mula.

What follows is a heuristic derivation of the Stochastic Integral,
Stochastic Differential Equations and Itô’s Formula.

First note that for (Bt : t ≥ 0) a standard Brownian motion argue
that, for all T and for δ sufficiently small and positive,∑

t∈{0,δ,..,T}

(Bt+δ − Bt) = BT and
∑

t∈{0,δ,..,T}

(Bt+δ − Bt)
2
≈ T (1.16)

The 1st sum is an interpolating sum. By independent increments
property of Brownian motion, the 2nd sum adds IIDRVs with each
with mean δ. Thus the strong law of large numbers gives the ap-
proximation. From this it is reasonable to expect that∑

t∈{0,δ,..,T}

σ(Xt) (Bt+δ − Bt) ≈
∫ T

0
σ(Xt)dBt

and ∑
t∈{0,δ,..,T}

µ(Xt) (Bt+δ − Bt)
2
≈

∫ T

0
µ(Xt)dt.

The first sum, above, is approximation from a Riemann-Stieltjes
integral, i.e. ∫ T

0
f (t)dg(t) ≈

∑
t∈{0,δ,..,T}

f (t)(g(t + δ) − g(t)).

So one might expect a integral limit. (This is unrigorous because
Riemann-Stieltjes Integration only applies to functions with finite
variation – while Brownian motion does not have finite variation.)
The second sum is a Riemann integral upon using the approxima-
tion (Bt+δ − Bt)

2
≈ δ. This is, very roughly, how a stochastic integral

is defined.
We can also define stochastic differential equations. If we induc-

tively define Xt by the recursion

Xt+δ − Xt = σ(Xt)(Bt+δ − Bt) + µ(Xt)δ, t = 0, δ, 2δ, (1.17)

115

1.4. STOCHASTIC INTEGRATION NSW

then, by summing over values of t ∈ {0, δ,,T − δ}, we expect Xt to
approximately obey an equation of the form

XT = X0 +

∫ T

0
σ(Xt)dBt +

∫ T

0
µ(Xt)dt.

This gives a Stochastic Differential Equation.
Often in differential and integration, we apply chain rule, d f (xt)

dt =

f ′(xt)dxt
dt . Ito’s the analogous result for Stochastic Integrals. Let Xt

be as above. For a twice continuously differentiable function f and
δ > 0 small, we can apply a Taylor approximation

f (Xt+δ) − f (Xt)
= f (Xt + σ(Xt)(Bt+δ − Bt) + µ(Xt)δ) − f (Xt)

= f ′(Xt)
{
µδ + σ · (Bt+δ − Bt)

}
+

f ′′(Xt)
2

{
µδ + σ · (Bt+δ − Bt)

}2
+ o(δ)

= f ′(Xt)
{
µδ + σ · (Bt+δ − Bt)

}
+

f ′′(Xt)
2

σ2
· (Bt+δ − Bt)2 + o(δ)

In the last equality we use that (Bt+δ−Bt) = o(δ1/2) (which follows from
(1.16)). Thus we see that

f (Xt+δ) − f (Xt) ≈
[

f ′(Xt)µ(Xt) +
σ(Xt)2

2
f ′′(Xt)

]
δ + f ′(Xt)σ(Xt) (Bt+δ − Bt) .

Consequently we expecrt that f (Xt) obeys the following Stochastic
Differential Equation:

f (XT) − f (X0) =

∫ T

0

[
f ′(Xt)µ(Xt) +

σ(Xt)2

2
f ′′(Xt)

]
dt +

∫ T

0
f ′(Xt)σ(Xt)dBt.

This is Ito’s formula.

116

1.5. DIFFUSION CONTROL PROBLEMS NSW

1.5 Diffusion Control Problems

• The Hamilton-Jacobi-Bellman Equation.

• Heuristic derivation; Davis-Varaiya Martingale Principle of Op-
timality.

We consider a continuous time analogue of Markov Decision Pro-
cesses from Section 0.3.

Time is continuous t ∈ R+; Xt ∈ Rn is the state at time t; at ∈ A is
the action at time t.

Def 96 (Plant Equation). Given functions µt(Xt, at) = (µi
t(Xt, at) : i =

1, ..,n) and σt(Xt, at) = (σi j
t (Xt, at) : i = 1, ..,n, j = 1, ...,m), the state evolves

according to a stochastic differential equation

dXt = µt(Xt, at)dt + σt(Xt, at) · dBt

where Bt is an m-dimensional Brownian motion. This is called the
Plant Equation.

A policy π chooses an action πt at each time t. (We assume that πt is
adapted and previsible.) Let P be the set of policies. The (instanta-
neous) cost for taking action a in state x at time t is ct(a, x) and cT(x)
is the cost for terminating in state x at time T.

Def 97 (Diffusion Control Problem). Given initial state x0, a dynamic
program is the optimization

L(x0) := minimize
Π∈P

C(x0,Π) := Ex0

[∫ T

0
e−αtct(Xt, πt)dt + e−αTcT(XT)

]
(DCP)

Further, let Cτ(x,Π) (Resp. Lτ(x)) be the objective (Resp. optimal objec-
tive) for (DCP) when the integral is started from time t = τwith Xt = x,
rather than t = 0 with X0 = x.

Def 98 (Hamilton-Jacobi-Bellman Equation). For a Diffusion Con-
trol Problem (DCP), the equation

0 = min
a∈A

{
ct(x, a) + ∂tLt(x) + µt(x, a) · ∂xLt(x) +

1
2

[σTσ] · ∂xxLt(x) − αLt(x).
}

(HJB)

117

1.5. DIFFUSION CONTROL PROBLEMS NSW

is called the Hamilton-Jacobi-Bellman equation.4 It is the continuous
time analogue of the Bellman equation [2].

Heuristic Derivation of the HJB equation

We heuristically develop a Bellman equation for stochastic differ-
ential equations using our knowledge of the Bellman equation for
Markov decision processes, in Section 0.3 (Theorem 23) and our
heuristic derivation of the stochastic integral in Section A.2. This
is analogous to continuous time control in Section 1.1.

Perhaps the main thing to remember is that (informally) the HJB
equation is

0 = min
actions

{"instantaneous cost" + "Drift term from Ito’s Formula"} .

Here Ito’s formula is applied to the optimal value function at time
t, Lt(x). This is much easier to remember (assuming you know Ito’s
formula).

We suppose (for simplicity) that Xt belongs to R and is driven by
a one-dimensional Brownian motion. The plant equation in Def 96
is approximated by

Xt+δ − Xt = µt(Xt, πt)δ + σt(Xt, πt)(BT+δ − Bt)

for small δ (recall (1.17)). Similarly the cost function in (DCP) can
be approximated by

Ct(x,Π) ≈ E
[∑

t∈{0,δ,...,T−δ}

(1 − αδ)
t
δ ct(Xt, πt)δ + (1 − αδ)

T
δ cT(XT)

]
.

This follows from the definition of a Riemann Integral and since
(1 − αδ)

t
δ → e−αt. The Bellman equation for this objective function

and plant equation is satisfies

Lt(x) = min
a∈A

{
ct(x, a)δ + (1 − αδ)Ex,a [Lt+δ(Xt+δ)]

}
.

or, equivalently,

0 = min
a∈A

{
ct(x, a) +

1
δ
Ex,a [Lt+δ(Xt+δ) − Lt(x)] − αEx,a [Lt+δ(Xt+δ)]

}
.

4Here [σTσ] · ∂xxLt(x) is the dot-product of the Hessian matrix ∂xxLt(x) with σTσ.
I.e. we multiply component-wise and sum up terms.

118

1.5. DIFFUSION CONTROL PROBLEMS NSW

Now by Ito’s formula Lt(Xt) can be approximated by

Lt+δ(Xt+δ) − Lt(Xt)

≈

[
∂tL + µt(Xt, πt) · ∂xL +

σt(Xt, πt)2

2
∂xxL

]
δ + ∂xL · σt(Xt, πt) · (Bt+δ − Bt)

Thus

1
δ
Ex,a [Lt+δ(Xt+δ) − Lt(x)] = ∂tL + µt(Xt, πt) · ∂xL +

σt(Xt, πt)2

2
∂xxL

Substituting in this into the above Bellman equation and letting
δ→ 0, we get, as required,

0 = min
a∈A

{
ct(x, a) + ∂tL + µt(x, a) · ∂xL +

σt(x, a)2

2
∂xxL − αLt(x)

}
.

The following gives a rigorous proof that the HJB equation is the
right object to consider for a diffusion control problem.

Thrm 99 (Davis-Varaiya Martingale Prinicple of Optimality). Sup-
pose that there exists a function Lt(x) with LT(x) = e−αTcT(x) and such
that for any policy Π with states Xt

Mt = Lt(Xt) +

∫ t

0
e−ατcτ(Xτ,Π)dτ

is a sub-martingale and, moreover that for some policy Π∗, Mt is a
martingale then Π∗ is optimal and

L0(X0) = min
Π∈P
E

[∫ T

0
e−ατcτ(Xτ, πτ)dτ + cT(XT)

]
.

Proof. Since Mt is a sub-martingale for all Π, we have

L0(X0) = M0 ≤ E[MT] = EX0

[∫ T

0
e−αscτ(Xτ,Πτ)dτ + LT(XT)︸ ︷︷ ︸

CT(XT)

]
︸ ︷︷ ︸

C(x0,Π)

Therefore L0(X0) ≤ C(X0,Π) for all policies Π.
If Mt is a Martingale for policy Π∗, then by the same argument

L0(X0) = C(X0,Π∗). Thus

C(X0,Π
∗) = L0(X0) ≤ C(X0,Π)

119

1.5. DIFFUSION CONTROL PROBLEMS NSW

for all policies Π and so Π∗ is optimal, and it holds that

L0(X0) = min
Π∈P
E

[∫ T

0
e−ατcτ(Xτ, πτ)dτ + cT(XT)

]
.

�

120

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

1.6 Merton Portfolio Optimization

• HJB equation for Merton Problem; CRRA utility solution; Proof
of Optimality.

• Multiple Assets; Dual Value function Approach.

We consider a specific diffusion control problem. We focus on set-
ting where there is one risky asset and one riskless asset, though
we will see that much of the analysis passes over to multiple assets.

Def 100 (The Merton Problem – Plant Equation). In the Merton prob-
lem you wish to optimise your long run consumption. You may invest
your wealth in a bank account receiving riskless interest r, or in a
risky asset with value St obeying the following SDE

dSt = St
{
σdBt + µdt

}
where each B = (Bt : t ≥ 0) is an independent standard Brownian
motion.

Wealth (Wt : t ≥ 0) obeys the SDE

dWt = r (Wt − ntSt)︸ ︷︷ ︸
Wealth in

bank

dt + ntdSt︸︷︷︸
Wealth in
asset

− ctdt︸︷︷︸
consumption

(1.18a)

= r (Wt − nt · St) dt + nt · dSt − ctdt (1.18b)

You can control ct your rate of consumption at time t and nt the number
of stocks the risky asset at time t. Also, we define θt = ntSt to be the
wealth in the risky asset at time t.

Def 101 (The Merton Problem – Objective). Given the above plant
equation, (1.18), the objective is to maximize the long-term utility of
consumption

V(w0) = max
(nt,ct)t≥0∈P(w0)

E

[∫
∞

0
e−ρtu(ct)dt

]
.

Here ρ is a positive constant and u(c) is a concave increasing utility
function. The set P(w0) is the set of policies given initial wealth w0.
Further, let V(w, t) be the optimal objective with the integral starting
for time t with wt = w.

121

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Prop 102. The HJB equation for the Merton Problem can be written
as

0 = max
c
{u(c) − c∂wV} + max

θ

{
θ(µ − r)∂wV +

1
2
σ2θ2∂wwV

}
− ρV + rw∂wV

Here the optimal θ and c are given by

θ∗ = −
∂wV
∂wwV

σ−2(µ − r), c∗ = (u′)−1(∂wV)

Proof. First we note that we can rewrite the SDE for Wt as follows:

dWt = r (Wt − nt · St) dt + nt · dSt︸ ︷︷ ︸
=ntStµdt+ntStσdBt

−ctdt

=
(
rWt + (µ − r)θt − ct

)
dt + θtσdBt .

Recall that informally the HJB equation is

0 = max
actions

{
"instantaneous cost" − ρV + "Drift term from Ito’s Formula"

}
.

Notice that if we apply Ito’s formula to V(Wt) we get that

dV(Wt) = ∂wV(Wt)dWt +
1
2
∂wwV(Wt)d[W]t

= ∂wV(Wt) [r (Wt − nt · St) dt + nt · dSt − ctdt]

+ ∂tV(Wt)dt +
θ2σ2

2
∂wwV(Wt)dt

Applying this to the above term gives as required

0 = max
θ,c

{
u(c) − ρV +

(
rw + θ · (µ − r) − c

)
∂wV +

1
2
σ2θ2∂wwV

}
= max

c
{u(c) − c∂wV} + max

θ

{
θ(µ − r) +

1
2
σ2θ2∂wwV

}
− ρV + rw∂wV

Differentiating the HJB equation w.r.t. θ gives

σ2θ∂wwV = −(µ − r)∂wV.

Now rearrange for θ∗. The final part is a straight-forward calculation
on supc {u(c) − c∂wV}. �

122

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Merton for CRRA Utility
We focus on the case of CRRA utility, that is:

u(c) =
c1−R

1 − R

for R > 0.

V(w0) = max
(nt,ct)t≥0

E

[∫
∞

0
e−ρt c1−R

t

1 − R
dt

]
.

Prop 103. For a CRRA utility it holds that:
a) The Value function takes the form

V(w) = γ
w1−R

1 − R

for some position constant γ > 0.
b) The HJB equation is optimized by

θ∗ =
w
R
σ−2(µ − r),

c∗ = γ−
1
R w and sup

c
{u(c) − c∂wV} =

R
1 − R

γ1− 1
R w1−R .

c) The HJB equation is satisfied by parameters

γ∗ = R−1

{
ρ + (R − 1)

(
r +

1
2
κ2

R

)}
where

κ = σ−1(µ − r) .

Proof. a) Note that having a policy for initial wealth λw0 is the same
as having a policy of wealth w0 and then multiplying each amount
invested by λ:

V(λw) = max
(nt,ct)t≥0∈P(λw0)

E

[∫
∞

0
e−ρt c1−R

t

1 − R
dt

]
= max

(nt,ct)t≥0∈P(w0)
E

[∫
∞

0
e−ρt (λct)1−R

1 − R
dt

]
= λ1−RV(w).

Letting λ = w−1 and γ = (1 − R)V(1) gives the result.

123

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

b) By part a), ∂wV(w) = γw−R and ∂wwV(w) = −Rγw−xR−1. So, by Prop
102,

θ∗ = −
∂wV
∂wwV

σ−2(µ − r) =
w
R
σ−2(µ − r)

Also,

sup
c
{u(c) − c∂wV} =⇒ u′(c) = ∂wV = γw−R

which since u′(c) = c−R, gives that c∗ = γ−
1
R w. Further,

sup
c
{u(c) − c∂wV} =

c∗1−R

1 − R
− c∗∂wV(c∗)

=
(γ−

1
R w)1−R

1 − R
− (γ−

1
R w)γw−R

=
R

1 − R
γ1− 1

R w1−R ,

as required.
c) Applying a) and b) to the HJB equation in Prop 102 gives

0 =
R

1 − R
γ1− 1

R w1−R
−

1
2
σ−2(µ − r)2 (∂wV)2

∂wwV
− ρV + rw∂wV

=
R

1 − R
γ1− 1

R w1−R
−

1
2
σ2(µ − r)2 (γw−r)2

(−Rγw−R−1)
− ργ

w1−R

1 − R

= γw1−R

[
R

1 − R
γ

1
R +

1
2
σ2 (µ − r)2

R
−

ρ

1 − R
+ r

]
.

Cancelling γw1−R and rearranging gives the required for for γ. �

To summarize: we notice we have shown that the parameters

θ∗ =
w
R
σ−2(µ − r) , c∗ = γ−

1
R w , (1.19a)

γ∗ = R−1

{
ρ + (R − 1)

(
r +

1
2
κ2

R

)}
, κ = σ−1(µ − r) . (1.19b)

give a solution to the HJB equation for the Merton problem. (Al-
though we have not yet proven them to be optimal.) Further note
that the weath under these parameters obeys the SDE

dWt = Wt

{
R−1κdWt + (r + R−1)|κ|2 − γ)dt

}
124

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

which is a geometric Brownian motion:

Wt = W0 exp
{
R−1κWt + (r +

1
R2κ

2(2R1) − γ)t
}

We now give rigorous argument for the optimality of parameters
c∗, θ∗ and γ∗ for the Merton problem with CRRA utility. (This section
can be skipped if preferred.)

Thrm 104. The parameters in (1.19), above, are optimal for the Mer-
ton problem.

Proof. Since u(y) is concave, u(y) ≤ u(x) + (y − x)u′(x). Thus for ζt =

e−ρtu′(c∗t) ∝ e−κBt−(r+ 1
2 |κ|

2)t we have that

E

[∫
∞

0
e−ρtu(ct)dt

]
≤ E

[∫
∞

0
e−ρt {u(c∗t) + (ct − c∗t)u

′(c∗t)
}

dt
]

= E

[∫
∞

0
e−ρtu(c∗t)dt

]
+ E

[∫
∞

0

(
ct − c∗t

)
ζtdt

]
(1.20)

Next we show that

Yt = ζtWt +

∫ t

0
ζscsds

is a positive local martingale. It is clear that the function Yt is pos-
itive. Note that

ζt = e−ρtu′(c∗t) = De−κBt−(r+ κ2
2)t where γw0.

Define function

ft(W,B) = W exp
{
−κB −

(
r +

κ2

2
t
)}

and note that ζtWt = D ft(Wt,Bt). Now lets apply Ito’s formula to
ft(Wt,Bt). By Ito’s formula:

d f = ∂t f dt + ∂w f dWt + ∂B f dBt +
1
2
∂BB f d[B]t + ∂Bw f d[BW]t +

1
2
∂ww f d[W]t.

Now lets check terms.

∂t f = −
(
r +

1
2
κ2

)
We−κBt−(r+ 1

2κ
2)t ∂B f = −κWe−κBt−(r+ 1

2κ
2)t ∂w f = e−κBt−(r+ 1

2κ
2)t

∂BB f = κ2We−κBt−(r+ 1
2κ

2)t ∂wB f = −κe−κBt−(r+ 1
2κ

2)t ∂ww f = 0
d[B]t = dt d[W,B]t = θσdt

125

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Substituting these into Ito’s formula above gives,

d f = e−κBt−(r+ 1
2κ

2)t

[
−W

(
r +

1
2
κ2

)
dt +

{
rW − ct + θ(µ − r)

}
dt

+ θσdBt −WκdBt +
W
2
κ2dt − θσκdt

]
Cancelling (using that κσ = (µ − r)) and rearrganging we get

d f + e−κBt−(r+ κ2
2)tctdt = e−κBt−(r+ 1

2κ
2)t [θσ −Wκ] dBt

So

ζtWt +

∫ t

0
ζscsds = D ft(Wt,BT) +

∫ t

0
DcteκBt−(r+ κ2

2)tdt

is a local-Martingale. Recall from stochastic integration theory that
every positive local martingale is a supermartingale.

Doob’s Martingale Convergence Theorem applied to Yt gives

ζ0w0 = Y0 ≥ EY∞ = E

[∫
∞

0
ζscsds

]
Since ζt = e−ρtu′(c∗t) = e−ρt(c∗t)

−R and by the definition of V(w0):

Ew0

[∫
∞

0
ζsc∗sds

]
= Ew0

[∫
∞

0
e−ρt(c∗t)

1−Rds
]

= (1 − R)V(w0)=γw1−R
0 = ζ0w0

The last equality holds since ζ0 = (c∗0)−R and c∗s = γ1/RW∗

s.
Combining the last equality and the inequality before that, we

see that
E

[∫
∞

0

(
ct − c∗t

)
ζtdt

]
≤ 0 .

Applying this to (1.20) we see that

E

[∫
∞

0
e−ρtu(ct)dt

]
≤ E

[∫
∞

0
e−ρtu(c∗t)dt

]
and, as required, c∗t is optimal. �

126

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Merton Portfolio Optimization with Multiple Assets
We now note how the above results extend to the case where there
aren’t many assets. Now suppose that there are d assets that can
be in invested in. These obey the Stochastic Differential Equation

dSi
t = Si

t

 N∑
j=1

σi jdB j
t + µidt

 , i = 1, ..., d

where B j
t is an independent Brownian motion for each j = 1, ...,N.

Wealth now evolves according the SDE

dWt = r (Wt − nt · St) dt + nt · dSt − ctdt

where nt = (ni
t : i = 1, ..., d) gives the amount of each asset St = (Si

t :
i = 1, ..., d) held in the portfolio at time t. Also we define θt = (ni

tS
i
t : i =

1, ..., d) as the wealth in each asset. As given in Def 101, our task is
the maximize the objective

V(w) = max
(nt,ct)t≥0∈P(w0)

E

[∫
∞

0
e−ρtu(ct)dt

]
.

We now proceed through exercises that are very similar to the case
with a single risky asset. We go through the proofs somewhat
quickly.

Lemma 9. Show that the HJB equation for the Merton Problem can
be written as

0 = max
c
{u(c) − c∂wV} + max

θ

{
θ · (µ − r)∂wV +

1
2
|σθ|2∂wwV

}
− ρV + rw∂wV.

where r = (r : i = 1, ..., d).

Proof. The proof follows more-or-less identically to Prop 102. Note
that in this case Ito’s formula applied to V(Wt) gives

dV(Wt) = ∂wV(Wt)dWt +
1
2
∂wwV(Wt)d[W]t

where

dWt =
(
rWt − rnt · St︸ ︷︷ ︸

θ·r

)
dt + nt · dSt︸ ︷︷ ︸

θ>[σdBt+µdt]

−ctdt = (rWt + θt(µ − r) − ct) dt + θ>t σdBt

d[W]t =
∑

i j

(θ>t σ)i(θ>t σ) jd[Bi
t,B

j
t] = |θtσ|

2dt.

127

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Thus

dV(Wt) =
[
(rWt + θt(µ − r) − ct) ∂wV(Wt) +

1
2
|θσ|2∂wwV(Wt)

]
dt + θ>t σdBt.

This is the drift term applied in the HJB equation. Thus recalling
that

0 = max
actions

{"instantaneous cost" + "Drift term from Ito’s Formula"} .

This gives the require HJB equation. �

Lemma 10. Show the optimal asset portfolio in the HJB equation is
given by

θ∗ = −
∂wV
∂wwV

(σσ>)−1(µ − r)

and

max
θ

{
θ · (µ − r)∂wV +

1
2

(θ>σ>σθ)∂wwV
}

= −
1
2
|κ|2

(∂wV)2

∂wwV

Proof. Considering Lemma 9 we have that

max
θ

{
θ · (µ − r)∂wV +

1
2

(θ>σ>σθ)∂wwV
}

=⇒ (µ−r)∂wV+∂wwV(σ>σ)θ∗ = 0.

Solving for θ∗ and substituting back into the maximization gives the
answer. �

Lemma 11. Show that for a CRRA utility the optimal solution to the
HJB equation is given by

θ∗ =
w
R

(σσ>)−1(µ − r) , c∗ = γ−
1
R w

where

γ−
1
R = R−1

{
ρ + (R − 1)(r +

1
2
|κ|2

R
)
}

κ = σ−1(µ − r).

Proof. 11 (In this proof when we refer to Prop 103 we mean that the
argument which was applied in the single-asset setting is identical
in the multiple asset setting.)

By Prop 103a)

V(w) = γ
w1−R

1 − R

128

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

for some constant γ. Differentiating twice gives

θ∗ = −
∂wV
∂wwV

(σσ>)−1(µ − r) =
w
R

(σσ>)−1(µ − r).

By Prop 103b), c∗ = γ−
1
R w. Substituting these solutions into the HJB

equation gives

0 = max
c
{u(c) − c∂wV} + max

θ

{
θ · (µ − r)∂wV +

1
2
|σθ|2∂wwV

}
− ρV + rw∂wV

=
R

1 − R
γ1− 1

R w1−R +
1
2
|κ|2 ·

γ

R
w1−R

− ργ
w1−R

1 − R
+ rγw1−R

Rearranging and solving for γ gives the required solution for γ∗. �

Def 105 (Merton Portfolio and Market Price Risk Vector). As given
above,

θ∗ =
w
R

(σσ>)−1(µ − r) ,

is called the Merton Portfolio and

κ = σ−1(µ − r).

is called the Market Price Risk Vector.

Dual value function approach
We could solve the CRRA utility case because it had a special struc-
ture. We now give a method for solving for general utilities u(t, c).

Here we assume that u(t, c) is continuous in t and c, concave in c
and satisfies

lim
c→∞

u′(t, c) = 0

The HJB equation for the Merton problem is

0 = max
θ,c

{
u(t, c) + ∂tV +

(
rw + θ · (µ − r) − c

)
∂wV +

1
2
|σTθ|2∂wwV

}
.

We take the LF transform of u,

u∗(t, z) = max
c
{u(t, c) − zc}

Further we define
J(t, z) = V(t,w) − wz

where w is such that z = ∂wV(t,w).

129

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Thrm 106. The HJB equation can be written as

0 = u∗(t, c) + ∂tJ − rz∂zJ +
1
2
|κ|2z2∂zzJ

Moreover if we suppose that u(t, x) = e−ρtu(x), for u(x) concave and
increasing, the HJB equation becomes

0 = u∗(y) − ρ j(y) + (ρ − r)yj′(y) +
1
2
|κ|2y2 j′′(y)

Noticed in the first HJB equation above that we have got rid of
the maximization and in the second we have a linear ODE, which
can be solved using standard methods.

Proof. First we will show that

∂zJ = −w, ∂zzJ = −
1

∂wwV
, ∂tJ = ∂tV (1.21)

We can ignore the dependence of t for the first two expressions i.e.
take J(t, z) = J(z). Now J(z) = V((V′)−1(z)) − z(V′)−1(z), so

J′(z) =
d
dz

(V′)−1(z) ·V′((V′)−1(z))︸ ︷︷ ︸
=z

−z
d
dz

(V′)−1(z)− (V′)−1(z) = −(V′)−1(z) = −w

and
J′′(z) = −

d
dz

(V′)−1(z) = −
1

V′′((V′)−1(z))
= −

1
V′′(w)

.

Now reintroducing dependence on t,

∂J
∂t

= ∂tV(t,w) +
dw
dt

∂wV︸︷︷︸
=z

−
dw
dt

z = ∂tV

This gives the required derivatives in (1.21).
Substituting the expressions in (1.21), the HJB equation is

0 = max
c
{u(t, z) − c∂wV} + max

θ

{
θ · (µ − r)∂wV +

1
2
|σθ|2∂wwV

}
+ ∂tV + rw∂wV

= u∗(t, ∂wV) −
1
2
|κ|2

(∂wV)2

∂wwV
+ ∂tV + rw∂wV

= u∗(t, z) +
1
2
|κ|2z2∂zzJ + ∂tJ − rz∂zJ .

130

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Now is we suppose that u(t, x) = e−ρtu(x), for u(x) concave and
increasing, then by the same argument as Prop 103a) we have that

V(t,w) = e−ρtV(w) .

Defining j(z) = V(w) − wz where w is such that z = ∂wV(t,w), the
following are straightforward calculations:

J(t, z) = e−ρt j(y), ∂tJ = −ρe−ρt j(y) + ρe−ρtyj′(y)
∂zJ = j′(y), ∂zzJ = eρt j′′(y)

where y = zeρt. Now substituting these terms into the HJB equation
gives the result:

0 = u∗(t, z)︸ ︷︷ ︸
=e−ρtu∗(y)

+ ∂tJ︸︷︷︸
=−ρe−ρt j(y)+ρe−ρt yj′(y)

− rz∂zJ︸︷︷︸
re−ρt yj′(y)

+
1
2
|κ|2z2∂zzJ︸ ︷︷ ︸

1
2 |κ|

2 y2e−ρt j′′(y)

.

�

131

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Exercises
Ex 107. We consider the standard Merton investment problem. We
assume that utility is derived from both consumption and wealth ac-
cording to the function

u(c,w) =
wαcβ

1 − R
for α and β positive constants such that 1 − R = α + β. Show that the
solution to the HJB equation is of the form

V(w) = A
w1−R

1 − R

and write down the HJB equation for this problem and use it to find
the constant A.

Ex 108. We consider the standard Merton investment problem. We
assume that utility has the form

u(c) = −
1
R

e−Rc.

for R > 0. Argue that the HJB equation (as a function of wealth and
time) has a solution of the form

V(t,w) = −Ae−ρte−rRw

for some positive constant A and that for this there is constant amount
of wealth kept in the risky asset.

Ex 109. We consider the Merton investment problem but now the
interest rate can vary. Wealth (Wt : t ≥ 0) satisfies W0 = w and obeys
the stochastic differential equation

dWt = {rtWt + (µ − rt)θt − ct}dt + θtσdBt.

and the interest rate obeys the stochastic differential equation

drt = β(r̄ − rt)dt + σrdBr
t

where β, r̄ and σr are fixed parameters and Br
t is a standard Brownian

motion with covariation [Br
t ,Bt] = ηt .

We maximize the utility of a CRRA utility function:

V(w, r) = max
(θs,cs)s≥0

E

[∫
∞

0
e−ρsu(cs)ds

∣∣∣∣∣∣W0 = w, r0 = r
]
, with u(cs) =

c1−R
s

1 − R
.

132

1.6. MERTON PORTFOLIO OPTIMIZATION NSW

Show that,

V(w, r) = γ(r)
w1−R

1 − R
for some function γ(r), and analyse the HJB equation to find the dif-
ferential equation that the function γ(r) must satisfy.

133

Chapter 2

Stochastic Approximation

134

2.1. LYAPUNOV FUNCTIONS NSW

2.1 Lyapunov Functions
Lyapunov functions are an extremely convenient device for proving
that a dynamical system converges.

• For some continuous function f : Rn
→ Rn, we suppose x(t)

obeys the differential equation
dx
dt

= f (x(t)), t ∈ R+. (2.1)

• A Lyapunov function is a continuously differentiable function
L : Rn

→ R with unique minimum at x∗ such that

f (x) · ∇L(x) < 0, ∀x , x∗. (2.2)

• We add the additional assumption that {x : L(x) ≤ l} is a com-
pact set for every l ∈ R.

Theorem 8. If a Lyapunov exists (2.2) for differential equation (2.1)
then L(x(t))↘ L(x∗) as t→∞ and

x(t) −−−→
t→∞

x∗.

Proof. Firstly,
dL(x(t))

dt
= f (x(t)) · ∇L(x(t)) < 0.

So L(x(t)) is decreasing. Suppose it decreases to L̃. By the Funda-
mental Theorem of Calculus

L̃ − L(x(t)) =

∫
∞

t

dL(x(s))
ds

ds −−−→
t→∞

0 (2.3)

Thus we can take a sequence of times {sk}
∞

k=1 such that dL(x(sk))
dt → 0 as

sk →∞. As {x : L(x) < L(x(0))} is compact, we can take a subsequence
of times {tk}

∞

k=1 ⊂ {sk}
∞

k=1, tk →∞ such that {x(tk)}∞k=0 converges. Suppose
it converges to x̃. By continuity,

0 = lim
k→∞

dL(x(tk))
dt

= lim
k→∞

f (x(tk)) · ∇L(x̃) = f (x̃) · ∇L(x̃).

Thus by definition x̃ = x∗. Thus limt→∞ L(x(t)) = L(x∗) and thus by
continuity of L at x∗ we must have x(t)→ x∗. �

• One can check this proof follows more-or-less unchanged if x∗,
the minimum of L, is not unique.

135

2.1. LYAPUNOV FUNCTIONS NSW

La Salle’s Invariance Prinicple
We generalize and strengthen the Lyapunov convergence result in
Theorem Lya:ConvThrm. Here we no longer consider convergence
to a unique global minimum of L(x). Instead, we find convergence
to points

X
? =

{
x : g(x) · ∇L(x) = 0

}
The set X? is called the set of invariant points. Notice, under the
conditions of Theorem 8, X? = {x?}. In general, X? contains all local
[and global] minima of L(x). If the dynamics exclude invariant points
which are non-local minima [for instance by taking g(x) = −η∇L(x)]
then X? is exactly the set of local minima. The result which proves
convergence to invariant points is called Salle’s Invariance Prinicple.

We assume the following

• The process x(t), t ∈ R+ obeys the o.d.e.

dx
dt

= g(x(t))

for g : Rd
→ Rd a continuous function.

• x(0) ∈ X where X is a compact set such that if x(0) ∈ X then
x(t) ∈ X for all t.

• The Lyapunov function L : Rd
→ R+ is a continuously differen-

tiable function such that

g(x) · ∇L(x) ≤ 0, ∀x ∈ X

and we let
X
? = {x ∈ X : g(x) · ∇L(x) = 0}.

La Salle’s Invariance Prinicple is as follows1

Theorem 9 (La Salle’s Invariance Prinicple). As t → ∞, x(t) con-
vergences to X? uniformly over initial conditions x(0) ∈ X. That is:
∀x(0) ∈ X ∀ε > 0 ∃ T > 0 such that

min
x?∈X?

∣∣∣x(T) − x?
∣∣∣ < ε .

1The orginial result of La Salle proves pointwise convergence rather than uni-
form convergence, other than this the proof closely follows La Salle’s argument.

136

2.1. LYAPUNOV FUNCTIONS NSW

Proof. If x(0) belongs to a compact set then L(x(0)) ≤ l for some l ≥ 0.
For δ > 0, we let X?(δ) = {x ∈ X : −g(x) · ∇L(x) < δ}. Since dL/dt =
g(x) · ∇L(x) and L(x0) ≤ l, for time T > L/δ is must be that x(t) ∈ X?(δ)
for all t ≥ T. [This is the main part of the argument completed.]

It is reasonable to assume that x(t) ∈ X?(δ) for δ suitably small
then x(t) must be close to X?. This is true and to show this we
prove the following claim: for ε > 0 ∃δ > 0 such that if x(t) ∈ X?(δ)
then |x(T) − x?| < ε for some x? ∈ X?. The proof is a fairly standard
analysis argument: suppose the claim is not true, then there exists
a sequence xn such that −g(xn) · ∇L(xn) < 1/n and |xn − x?| ≥ ε for
all x? ∈ X?. Since X is compact xnk → x∞ over some subsequence
{nk}k∈N. By continuity g(x∞) · ∇L(x∞) = 0 and |x∞ − x?| ≥ ε for all x? ∈ X,
which is a contradiction since g(x∞) ·∇L(x∞) = 0 means x∞ ∈ X?. This
contradiction thus such thata there there exists a value n? such
that for all x such that −g(x) · ∇L(x) < δ := 1/n? implies minx? |x− x?| <
ε. �

Remark 110. We assume x(t) ∈ X for some compact set X. Notice a
natural condition that implies compactness is that

lim inf
|x|→∞

L(x) = ∞ .

Specifically this implies that Xl := {x : L(x) ≤ l} is compact and by
assumption that L(x) is decreasing, if x(0) ∈ Xl then x(t) ∈ Xl for all
t ∈ R+.

137

2.1. LYAPUNOV FUNCTIONS NSW

Convex Lyapunov Functions
Next if we assume a bit more about L(x) we can ask more about the
rate of convergence. We assume that

• L(x) is convex, minx L(x) = 0

•
dx
dt = −γt∇L(x(t))

• ||xt|| ≤ D for some D

Note, before we proceed recall that L(x) is a convex function iff

∇L(x)(y − x) ≤ L(y) − L(x) ≤ ∇L(y)(y − x) .

Theorem 10. Given the assumptions itemized above,

L(x̄T) ≤
D

TγT

where x̄T = 1
T

∫ T

0
xtdt.

Proof. By Jensen’s inequality,

L(x̄T) ≤
1
T

∫ T

0
L(x(t))dt .

So we analyse the integral of L(x(t)).∫ T

0
L(x(t))dt =

∫ T

0
L(x(t)) − L(x?)dt ≤

∫ T

0
∇L(x(t))(x(t) − x?)dt

Notice that since dx
dt = −ηt∇L(x(t)) we have

−
1

2ηt

d
dt
||x(t) − x?||2 = ∇L(x(t))(x(t) − x?).

Substituting this into the integral above gives∫ T

0
L(x(t))dt ≤ −

∫ T

0

1
2ηt

d
dt
||x(t) − x?||2dt

= −

[
1

2ηt
||x(t) − x?||2

]T

0

+

∫ T

0

1
2
||x(t) − x?||2

dη−1

dt
dt

≤
D

2ηT
+

D
2ηT

=
D
ηT

138

2.1. LYAPUNOV FUNCTIONS NSW

Finally, applying this to our Jensen bound on L(x̄T) gives

L(x̄T) ≤
D

TηT
.

�

139

2.1. LYAPUNOV FUNCTIONS NSW

Contractions.
For Markov decision processes working with contractions is impor-
tant since the Bellman operator is a contraction in the || · ||∞ norm.
Thus we give some Lyapunov convergence results in this case.

Recall that F : Rd
→ Rd is a contraction if, for β ∈ (0, 1) it holds

that
||F(x) − F(y)||p ≤ β||x − y||p

in this section we let

||x||p :=

 d∑
i=1

wi|xi|
p


1
p

for weights wi > 0 and p such that 1 ≤ p ≤ ∞.

Theorem 11. If we suppose that x(t) obeys the ODE

dx
dt

= F(x) − x

where F(x) is contraction with fixed point x? then L(x) = ||x − x?||p is a
Lyapunov function and x(t)→ x∗.

Proof. We let sgn(x) be the sign function that is sgn(x) = +1 if x > 0,
sgn(x) = −1 if x < 0 and sgn(x) = 0 if x = 0. For now we assume
1 ≤ p < ∞ (shortly we will extend to allow p = ∞).

By the chain rule

dL
dt

=
∑

i

∂L
∂xi

dxi

dt

=

∑
j

w j|x j − x?|p


1−p
p

︸ ︷︷ ︸
||x−x?||1−p

p

∑
i

wisgn(xi − x?i)|xi − x?|1−p
(
Fi(x) − xi

)
︸ ︷︷ ︸

Fi(x)−Fi(x?)−(xi−x?i)

||x − x?||1−p
p

∑
i

wisgn(xi − x?i)|xi − x?i |
p−1

(
Fi(x) − Fi(x?)

)︸ ︷︷ ︸
≤||x−x?||p−1||F(x)−F(x?)||p

−||x − x?||p

≤ ||F(x) − F(x?)||p − ||x − x?||p

140

2.1. LYAPUNOV FUNCTIONS NSW

Therefore integrating the above gives

||x(t) − x?||p − ||x(s) − x?||p ≤
∫ t

s
||F(x(u)) − F(x?)||p − ||x(u) − x?||pdu

Notice we can allow p = ∞ in the above expression since ||z||p → ||z||∞
uniformly on compacts. So applying the fact F is a contraction we
gain that

||x(t) − x?||p − ||x(s) − x?||p ≤ −(1 − β)
∫ t

s
||x(u) − x?||pdu

which ensures convergence of x(t) to x?. �

141

2.1. LYAPUNOV FUNCTIONS NSW

Exponential Convergence
We now place some assumptions where we can make further com-
ments about rates of convergence.

Theorem 12. If we further assume that f and L satisfy the conditions

1. f (x) · ∇L(x) ≤ −γL(x) for some γ > 0.

2. ∃ α, η > 0 such that α||x∗ − x||η ≤ L(x) − L(x∗).

3. L(x∗) = 0.

then there exists a constants κ,K > 0 such that for all t ∈ R+

||x(t) − x∗|| ≤ Ke−κt. (2.4)

Proof.
dL(x(t))

dt
= f (x(t)) · ∇L(x(t)) ≤ −γL(x(t)).

So long as x(t) , x∗, L(x(t)) > 0, thus dividing by L(x(t)) and integrating
gives

log L(x(t)) − log L(x(0)) =

∫ t

0

1
L(x(s))

dL(x(s))
dt

ds ≤ −γt

Rearrganging gives
L(x(t)) ≤ L(x(0))e−γt

This gives exponential convergence in L(x(t)) and quick application
of the bound in the 2nd assumption gives

||x(t) − x∗|| ≤
L(x(0))
α

e−
γ
η t.

�

• We can assume the 2nd assumption only holds on a ball ar-
round x∗. We have convergence from Theorem 8, so when x(t)
is such that assumption 2 is satisfied we can then apply the
same analysis for an exponential convergence rate. Ensuring
the 2nd assumption locally is more easy to check, eg. check L
is positive definite at x∗.

142

2.1. LYAPUNOV FUNCTIONS NSW

Linear-Quadratic Lyapunov Control
We consider one of the key examples: a linear dynamic and a quadratic
Lyapunov function. We give a very brief treatment here. A fuller text
considering various design principles is Khalil [27].

We consider x(t) ∈ Rd which satisfies the linear differential equa-
tion

dx
dt

= Ax ,

Here A is a d × d matrix. We assume that det(A) , 0.

Remark 111. Note the condition det(A) , 0 excludes the possibility of
multiple equilibria. It also allow us to easily extend to the case where

ẋ = Ax + b

for a constant vector b. Since Ax? = b for some x? and thuswe consider
the equivalent differential equation d

dt x̃ = Ax̃ for x̃(t) = x(t) − x?.

The only equilibrium of the above equation is x? = 0. The key
property that determines convergence is if the matrix is Hurwitz:

Definition 5 (Hurwitz Matrix). The non-singular matrix A is said to
Hurwitz if all eigenvalues of A have (strictly) negative real part. I.e.
Re(α) < 0 for all eigenvalues α.

Theorem 13. If the matrix A is Hurwitz then x(t)→ 0 as t→∞.

Remark 112. The converse to the result also holds. Specifically if
x(t) → 0 for all initial conditions then the matrix A must be Hurwitz.
We don’t cover this part, but the proof should give a good indication
of why this is true.

Proof of Theorem 13. It is not too hard to show (this is exercise Ex116
below) that the solution to the above equation is uniquely given by
the matrix exponential

x(t) = eAtx(0)

where

eAt = I + tA +
t2

2!
A2 + ...

143

2.1. LYAPUNOV FUNCTIONS NSW

We can write A in Jordan normal form A = UJU−1. Recall that J is a
block diagonal matrix. I.e. The non-zero entries are

J =


J1(α1)

J2(α2)
. . .

Jn(αn)

 where Ji(αi) =


αi 1

αi 1
.

αi 1
αi

 .
Here αi, i = 1, ...n are the set of eigenvalues of A. We are interested
in powers Ak. Notice then that Ak = UJkU−1 and thus

eAt = UeJtU−1 .

Further a quick check gives that

[J(α)k]i j =

(
k

j − i

)
αk− j+i .

Thus

[eJ(α)t]i j =

∞∑
k=0

tk

k!
[J(α)k]i j =

∞∑
k= j−i

1
(k − j + i)!(j − i)!

αk− j+itk− j+it j−i =
t j−i

(j − i)!
eαt .

From this we see that

eAt =

n∑
l=1

ml∑
j=1

t jeαltRl j (2.5)

where Rl j is a matrix for each l and j. (Here ml is the multiplicity of
the l-th eigenvalue). Notice if Re(αl) ≤ −c < 0 for each eigenvalue αl

then |eαlt| < e−ct. Applying this to our solution for x(t) gives

||x(t)|| ≤ Ctme−ct
−−−→
t→∞

0 ,

for some positive constant C. �

Remark 113. Note that for a Hurwitz matrix the eigenvalue closest
to 0 determines the rate of convergence to equilibrium in (2.5). Notice
that when the matrix is not Hurwitz in that Re(α) > 0 for some eigen-
value, then the terms in (2.5) can diverge. Thus we cannot expect
convergence.

144

2.1. LYAPUNOV FUNCTIONS NSW

The previous analysis in Theorem 13 did not involve any Lya-
punov function we now introduce this here. We consider Lyapunov
functions of the form

L(x) = x>Λx

where Λ is a positive definite matrix. A quick calculation gives

dL
dt

= x>A>Λx + x>ΛAx =: −x>Rx

where R := −A>Λ −ΛA.

Definition 6 (Sylvester’s equation). For a matrices R and A, the
equation

−R = A>Λ + ΛA

is known as Sylvester’s equation.

There are standardized numerical routines for solving Sylvester’s
equation, e.g. Matlab uses the Bartels–Stewart algorithm.

It is worth noting the following

Theorem 14. If the solution to Sylvester’s equation is positive definite
then x(t)→ 0 as t→ 0.

The above result follows immediately from Theorem 8. Note fur-
ther since ||x||λmin(M) ≤ xMx ≤ λmax(M) for any positive definite matrix
M then we can also apply Theorem 12 to give an exponential rate of
convergence.

We also see that the (unique) solution to

Theorem 15. If A is Hurwitz then for each positive definite R there
exists a (unique) positive definite matrix Λ given by

Λ =

∫
∞

0
eA>tReAtdt

such that

−R = A>Λ + ΛA (2.6)

Remark 114. We note that the converse to this result also holds.
That is if we solve Sylvester’s equation with some positive definite
matrix then the matrix A must be Hurwitz.

145

2.1. LYAPUNOV FUNCTIONS NSW

Proof. Notice if we take Λ =
∫
∞

0
eA>tReAtdt then

A>Λ + ΛA =

∫
∞

0
A>eA>tReAt + eA>tReAtAdt

=

∫
∞

0

d
dt

eA>tReAt dt =
[
eA>tReAt

]∞
t=0

= −R

So Λ is a solution to Sylvester’s equation. It is possible to show that
this Λ is well-defined, positive definite and is the unique solution to
Sylvester’s equation. (This is exercise Ex 117 below) �

Remark 115. We note that the above analysis extends to non-linear
o.d.e’s in the sense that if

dx
dt

= f (x)

for f (x) is continuously differentiable with f (0) = 0 and A = ∇ f (0)
Hurwitz then x(t) → 0 for some neighborhood of 0. (This is exercise
Ex 118 below.

Ex 116. 1) Show that eAtx(0) satisfies the o.d.e.

dx
dt

= Ax .

2) Show that if there are two solutions x1(t) and x2(t) to the above o.d.e.
then for z(t) = x1(t) − x2(t)

dz
dt

= 0

and thus argue that there is a unique solution to the o.d.e.

Ex 117. We verify properties of the matrix Λ =
∫
∞

0
eA>tReAtdt for R pos-

itive definite:
1) [Positive Definite] For Λ =

∫
∞

0
eA>tReAtdt show that x>Λx = 0 implies

eA>tx = 0 and thus argue that Λ is positive definite, when A is Hur-
witz.
2) [Uniqueness] Suppose that Λ′ is another solution to Sylvester’s
equation, show that

0 =
d
dt

{
eA>t(Λ −Λ′)eAt

}
By noting that eAt

→ 0 as t→ 0, show that Λ′ = Λ.

146

2.1. LYAPUNOV FUNCTIONS NSW

Ex 118 (Local stability). We prove the claims in Remark 115. We
assume that

dx
dt

= f (x)

for f (x) is continuously differentiable with f (0) = 0 and A = ∇ f (0) is
Hurwitz.
1) Show (by a Taylor expansion) that

f (x) = Ax + g(x)

where g(x)/||x||2 → 0.
2) Let Λ be the solution to Sylvester’s equation with R = I, show that

dL
dt

= −||x||22 + 2x>Λg(x)

3) Noting that λmin(Λ) > 0, combine parts 1) and 2) to show that

dL
dt

= −||x||22 + o(||x||22)

and thus argue that x(t)→ 0 in some neighborhood of x = 0.

References
The Lyapunov method goes back to Lyapunov in (1892) [34]. Ex-
tensions were considered by La Salle [30]. A widely used textbook
treatment is Khalil [27]. Applications to internet congestion control
are given by Srikant [44]. The convex Lyapunov function proof is
the an o.d.e adaptation to the result of [58].

147

2.2. ROBBINS-MONRO. NSW

2.2 Robbins-Monro.

• Robbins Monro step rule.

• Robbins-Siegmund Theorem.

• Stochastic Gradient Descent.

• Asynchronous Implementation.

We review a method for finding fixed points then extend it to slightly
more general, modern proofs.

Often it is important to find a solution to the equation

0 = g(x∗)

by evaluating g at a sequence of points. For instance Newton’s
method would perform the updates xn+1 = xn − g(xn)/g′(xn). However,
Robbins and Monro consider the setting where we cannot directly
observe g but we might observe some random variable whose mean
is g(x). Thus we observe

yn = g(xn) + εn (2.7)

where εn is a random variable with mean zero and hope solve for
g(x) = 0. Notice in this setting, even if we can find g′(x), Newton’s
method may not converge. The key idea of Robbins and Monro is to
use a schema where

xn+1 = xn − αnyn (RM)

where we chose the sequence {αn}
∞

n=0 so that∑
n

αn = ∞,
∑

n

α2
n < ∞ .

Before proceeding here are a few different use cases:

• Quartiles. We want to find x such that P(X ≤ x) = p for some
fixed p. But we can only sample the random variable X.

• Regression. We preform regression g(x) = β0 + β1x, but rather
than estimate β we want to know where g(x) = 0.

148

2.2. ROBBINS-MONRO. NSW

• Optimization. We want to optimize a convex function f (x)
whose gradient is g(x). Assume that f (x) =

∑K
k=1 fk(x) for some

large K. To find the optimum at g(x) = 0 we randomly sample
(uniformly) fk(x) whose gradient, gk(x), is an bias estimate of
g(x).

The following result contains the key elements of the Robbins-Monro
proof

Lem 119. Suppose that zn is a positive sequence such that

zn+1 ≤ zn(1 − an) + cn (2.8)

where an and cn are positive sequences such that∑
n

an = ∞, and
∑

n

cn < ∞ (2.9)

then limn→∞ zn = 0.

Proof. We can assume that equality holds, i.e., zn+1 = zn(1−an)+cn. We
can achieve this by increasing an or decreasing cn in the inequality
(2.8); neither of which effect the conditions on an and bn, (2.9).

Now for all n we have the following lower-bound

−z0 ≤ zn − z0 =

n−1∑
k=0

(zk+1 − zk) =

n−1∑
k=0

ck −

n−1∑
k=0

akzk

Since
∑

ck < ∞ it must be that
∑

akzk < ∞. Thus since both sums
converge it must be that limn zn converges. Finally since

∑
ak = ∞

and
∑

akzk < ∞ it must be that limn zn = 0. �

An Easy Robbin’s Monro Proof

The following lemma is a straight-forward proof based on the origi-
nal argument of Robbins and Monro. This proof is intentionally not
the most general but instead gives the key ideas.

We assume that supnE[yn] < ∞. The main assumption that we
make is that, for some κ > 0

(g(y) − g(x))>(y − x) ≥ κ||y − x||2 (2.10)

Here are a couple of instances where this holds:

149

2.2. ROBBINS-MONRO. NSW

• g(x) is the gradient of a strongly convex function f (x).2

• g : [xmin, xmax] → [ymin, ymax] is differentiable real valued with
g(xmin) < 0, g(xmax) > 0 and there is a unique point x∗ such that
g(x∗) = 0 and g′(x∗) > 0.

The first item shows that Robbins-Monro plays nicely with convex
optimization problems. The second items shows however, that we
don’t need g to be the derivative of a convex function for the method
to work.

Thrm 120 (Robbins-Monro). If we chose xn acording to the Robbin-
Monro step rule (RM) and we assume (2.10) then we have that

E[(xn − x∗)2] −−−→
n→∞

0

where here x∗ satisfies g(x∗) = 0.

Proof. Let zn = E[(xn− x∗)2], en = E[y2
n] and dn = E[(xn− x∗)(g(xn)− g(x∗))].

Then we have

zn+1 = E(xn+1 − xn + xn − x∗)2

= E(xn+1 − xn)2 + 2E[(xn+1 − xn)(xn − x∗)] + E(xn − x∗)2

= α2
nE[y2

n] − 2αnE[g(xn)(xn − x∗)] + E(xn − x∗)2

= α2
nen − 2αndn + zn

Thus

dn = E[(xn − x∗)(g(xn) − g(x∗))] ≥ κE[(xn − x∗)(xn − x∗)] = κzn .

Thus
zn+1 ≤ zn(1 − 2anκ) + a2

nen.

Now applying Lemma 119 gives the result. �

2Note, if g(x) = ∇ f (x) then (2.10) is the definition of f (x) begin strongly convex.

150

2.2. ROBBINS-MONRO. NSW

Additional Results?

We develope a few additional results. These can be skipped on first
reading.

Projection. Notice that if we wish to constrain the vector xn to a
convex set X, then we can do this. In particular, if we are looking
for a point x? ∈ X such that

(x − x?)>g(x?) ≥ 0, ∀x ∈ X,

(We are implicitly assuming such a point x? exists. If g(x) is the
derivative of a convex function then x? exists and this condition
says all points x are higher up than x?.) then we can adapt the
Robbins-Monro scheme to consider

xn+1 = ΠX
(
xn − αnyn

)
(2.11)

where here ΠX(z) is the L2 projection of z on the set X. Notice that
projections always reduce distances specifically Lemma 25 in the
appendix proves

||ΠX(x) −ΠX(y)||2 ≤ ||x − y||2

The following proof is almost identical to Theorem 120 and we leave
the proof as an exercise for the reader.

Thrm 121 (Projected Robbins-Monro). If we chose xn according to
the Projected Robbins-Monro step rule (2.11) and we assume (2.10)
then we have that

E[(xn − x∗)2] −−−→
n→∞

0

where here x∗ satisfies (x − x?)>g(x?) ≥ 0 ∀x ∈ X,.

For this projected algorithm to be practical we are implicitly as-
suming that we can efficiently calculated the projection on X. This
is possible for certain sets such as the positive orthant Rd

+, hyper-
planes H = {x : n>x = c} and, sometimes, simplexes S = {x ∈ Rd

+ :
n>x = c} such as the probability simplex.

A recursion for finite time bounds. The following Lemma is also
sometimes applied to get tighter bounds on convergence.

Lem 122. Suppose that zn is a positive sequence such that

zn+1 ≤ zn(1 − an) + cn

151

2.2. ROBBINS-MONRO. NSW

Then

zn+1 ≤ z0

n∏
k=0

(1 − ak) +

n∑
j=0

c j

n∏
k= j+1

(1 − ak)

Proof. The proof follows by repeated substitution

zn+1 ≤ zn(1 − an) + cn ≤ (zn−1(1 − an−1) + cn−1)(1 − an) + cn

≤ zn−1(1 − an−1)(1 − an) + cn + cn−1(1 − an)
...

≤ z0

n∏
k=0

(1 − ak) +

n∑
j=0

c j

n∏
k= j+1

(1 − ak)

�

A Stochastic Recursion for Almost Sure Convergence. The fol-
lowing proposition is a Martingale version of the above result.

Prop 123 (Robbins-Siegmund Theorem). If

E[Zn+1|Fn] ≤ (1 − an + bn)Zn + cn (2.12)

for positive adaptive RVs Zn, an, bn, cn such that with probability 1,∑
n

an = ∞,
∑

n

bn < ∞, and
∑

n

cn < ∞

then limn→∞ zn = 0.

Proof. The results is somemanipulations analogous to the Robbins-
Monro proof and a bunch of nice reductions to Doob’s Martingale
Convergence Theorem.

First note the result is equivalent to proving the result with bn = 0
for all n. If we divide both sides of (2.12) by

∏n
m=0(1 − bm) we get

E[Z′n+1|Fn] ≤ (1 − a′n)Z′n + c′n ,

where a′n = an/(1 + bn), c′n = cn/
∏n

m=0(1 + bm) and Z′n = Zn/
∏n

m=0(1 + bm).
Notice since

∑
bn converges then so does

∏
(1 + bn). Thus a′n, c′n and

Z′n have the same convergence properties as those required for an, cn

and Zn. Thus, we now assume bn = 0 for all n.
Now notice

Yn = Z′n +

n−1∑
k=0

a′kZ
′

k −

n−1∑
k=0

c′k

152

2.2. ROBBINS-MONRO. NSW

is a super-martingale. We want to use Doob’s Martingale conver-
gence theorem; however, we need to apply a localization argument
to apply this. Specifically, let τC = inf{n ≥ 0 :

∑n
k=1 c′k > C}. This is a

stopping time. Notice

Yn∧τC ≥ −

n∧τC−1∑
k=0

c′k ≥ −C.

So Yn∧τC is a super-martingale and below by −C. Thus by Doob’s
Martingale Convergnce Theorem, limn→∞ Yn∧τC exists for each C > 0,
and τC = ∞ for some C, since

∑
c′k < ∞. Thus limn→∞ Yn exists.

Now notice
n∑

k=1

c′k −
n∑

k=1

a′kZ
′

k = Z′n+1 − Yn+1 ≤ −Yn+1.

So like in the last proposition, since lim Yn and
∑

c′k exists, we see
that

∑
∞

k=1 a′kZ
′

k converges. And thus Z′n+1 converges.
Finally since we assume

∑
k a′k = ∞ and we know that

∑
∞

k=1 a′kZ
′

k < ∞
it must be that Z′k converges to zero. �

153

2.2. ROBBINS-MONRO. NSW

Example: Sequential Mean-Variance Portfolio Optimization

Here we consider a sequential version the classical mean-variance
portfolio optimization of Markowitz. Here we assume that the mean
and variance of the stock price change are unknown and we must
learn these while constructing an optimal portfolio.

The set up is as follows. At time t = 0 there are stocks at prices
s = (s0

0, s
1
0, ...s

d
0) ∈ Rd+1. Given t = 1, 2, ... at time t + 1 the are work

st+1 = (∆0
t s0

t ,,∆
d
t sd

t)

where ∆0
t ,∆

1
t , ...,∆

d
t are positive independent random variables repre-

senting the change in the stock prices. We define the vector µ and
the matrix Σ by

µi := E[∆i
t] and Σi j = E[(∆i

t − µ
i
t)(∆

j
t − µ

j
t)]

for i, j = 1, ..., d. Also we µ0 = (1 + r) = ∆0
t and so is a risk less asset.

We let θi be the proportion of wealth in stock i. We consider the
objective

max
θ

µ>θ −
λ
2
θ>Σθ subject to

d∑
i=1

θi = 1, θi
≥ 0 .

Remark 124. Notice this is equivalent to solving the optimization

max µ>θ s.t. θ>Σθ ≤ σ, θ>1 = 1, θ ≥ 0

for some σ and

min θ>Σθ s.t. µ>θ ≥ m θ>1 = 1over θ ≥ 0

for some m. (Basically the optimization is the Lagrangian for both the
above optimizations.) Both of these are more standard representa-
tions of Mean-Variance portfolio optimization.

Now notice that the objective, above, can be rewritten as

max
∑

i

θiµi
−
λ
2
E

∑
i j

θi(∆i
− µi)(∆ j

− µ j)θ j


subject to µi = E[∆i],

∑
i

θi = 1

154

2.2. ROBBINS-MONRO. NSW

Thus applying projected Robbins-Monro to this we see that this can
be solved with the scheme

θ̃i
t+1 = θi

t + αt

µi
t − λ

∑
j

θi(∆i
t − µ

i
t)(∆

j
t − µ

j
t)θ

j
t


θi

t+1 = θ̃i
t + 1 −

∑
j

θ̃ j
t

µi
t+1 = µi

t + αt(∆i
t − µ

i
t)

Notice the second expression above corresponds to the projection
step.

155

2.2. ROBBINS-MONRO. NSW

Stochastic Approximation Examples.
Ex 125. Consider the Stochastic Differential Equation

dθt = −αtg(θt)dt + αtdBt .

Suppose that for some unique θ∗ that (θ∗ − θ)g(θ) ≤ −||θ − θ∗||2/2. Use
Ito’s formula to argue that zt = E||θt − θ∗||2/2 obeys the differential
equation

dzt

dt
≤ −αtzt +

1
2
α2

t

Then show that

zt − z1 ≤ e−
∫ t

0 αsds +

∫ t

0

1
2
α2

s e−
∫ t

s αududs.

Ex 126. Prove Theorem 121.
Rmk 127. A quick remark before proceeding with the solution. Note
that the above SDE behaves very similarly to the Robbins-Monro step
rule. Notice that θt behaves like the following process

θt − θ0 = G
(∫ t

0
αsds

)
+ B

(∫ t

0
α2

s ds
)

where here G(t) is a solution to the differential equation θ̇t = −g(θt)
and B(t) is a standard Brownian motion. If we take αs = 1/sγ for
γ ∈ (0, 1] then integral in the Brownian term is finite, so the random
part of the process eventually converges. While the integral in the G
function goes to infinity, so we observe the entire sample path of G(t)
is explored. So we expect to converge to the stationary behaviour of
the ODE θ̇ = −g(θ). This point is quite informal. Basically the work of
Kushner and Yin [CITE] argues this point in a somewhat more formal
sense.

References
Robbin-Monro introduce the procedure was (unsurprisingly) intro-
duced by Robbins and Monro [38] (A very readable paper). Stochas-
tic approximation has grown enormously, see Krushner and Yin [28]
for an excellent text on the topic. The discussion on finite time error
is based on Bach and Moulines [2]. Asynchronous update section
is based on reading Tsitsiklis [49] (and Bertsekas & Tsitsiklis [7]),
here we apply a Robbins & Siegmund [39].

156

2.3. STOCHASTIC GRADIENT DECENT NSW

2.3 Stochastic Gradient Decent
Suppose that we have some function F : Rp

→ R

F(θ) = EX[f (X;θ)]

that we wish to minimize. We suppose that the function f (X;θ)
is known and so is its gradient g(θ; X), where E[g(θ; X)] = G(θ) is
the gradient of F(θ). The difficulty is that we do not have direct
access to the distribution of X, but we can draw random samples
X1,X2, We can use the Robbins-Munro Schema to optimize F(θ).
Specifically we take

θn+1 = θn − αngn(θn) (SGD)
= θn − αnG(θn) + αnεn

where gn(θ) = g(θ; Xn) and εn = G(θ) − gn(θ) . The above sequence
is often referred to as Stochastic Gradient Descent. We chose the
sequence {αn}

∞

n=0 so that∑
n

αn = ∞,
∑

n

α2
n < ∞ .

(Note here we may assume that αn is a function of previous param-
eters and observations θ1, ..., θn−1 and X1, ...,Xn−1.) We let || · ||2 be the
Euclidean norm. We can prove that convergence θn to the minimizer
of F(θ).

Thrm 128 (Stochastic Gradient Descent). Suppose that θn, G(·), and
εn in Stochastic Gradient Descent (SGD) satisfy the following condi-
tions

1. ∃θ∗ such that ∀θ, G(θ) · (θ − θ∗) ≥ µ||θ − θ∗||22

2. ||G(θn)||22 ≤ A + B||θn||
2
2

3. E[||εn||
2
2|Fn] ≤ K

Then limn θn = θ∗ where θ∗ = argminθ F(θ) and assuming αn are deter-
ministic then limE[||θn − θ∗||22] = 0

Let’s quickly review the conditions above. First consider Condi-
tion 1. Note condition 1 implies moving in the direction of θ∗ always
decreases the F(θ), so θ∗ minimizes F. The statement (G(θ) − G(φ)) ·

157

2.3. STOCHASTIC GRADIENT DECENT NSW

(θ−φ) ≥ µ||θ−φ||2 is equivalent to F(θ) being strongly convex. So this
is enough to give Condition 1. Condition 2 can be interpreted as a
gradient condition, or that the steps θn do not grow unboundedly.
Condition 3 is natural given our analysis so far.

Proof.

||θn+1 − θ
∗
||

2
2 − ||θn − θ

∗
||

2
2

= − αnG(θn) · (θn − θ
∗) − αnεn · (θn − αnG(θn) − θ∗) + α2

n||εn||
2
2 + α2

n||G(θn)||22

Taking expecations with respect to E[|Fn] we get

E[||θn+1 − θ
∗
||

2
2 − ||θn − θ

∗
||

2
2|Fn]

= − αnG(θn) · (θn − θ
∗) + α2

nE[||εn||
2
2|Fn] + α2

n||G(θn)||22
≤ − αnµ||θn − θ

∗
||

2
2 + α2

nK + α2
n(A + B||θn − θ

∗
||

2
2)

Thus, rearranging

E[||θn+1 − θ
∗
||

2
2|Fn] ≤ (1 − αnµ + α2

nB)||θn − θ
∗
||

2
2 + α2

n(K + A)

Thus by Proposition 123, θn+1 → θ∗. Further taking expectations on
both sides above we have

E[||θn+1 − θ
∗
||

2
2] ≤ (1 − αnµ + α2

nB)E[||θn − θ
∗
||

2
2] + α2

n(K + A)

We can apply Lemma 119 (note that an = αnµ + α2
nB will be positive

for suitably large n), to give that E||θn+1 − θ∗||22] → 0 as n → ∞ as
required. �

Finally we remark that in the proof we analyzed ||θn − θ∗||2 but
equally we could have analyzed F(θn) − F(θ∗) instead.

Finite Time Error Bounds for Stochastic Gradient Descent

Above we established convergence of Stochastic Gradient Descent.
However, once we know it works we might want to know how well
it works. Considering the same set up as above, we establish some
finite time bounds on the error of stochastic gradient descent.

This involves a more exact analysis of the inequality

E[||θn+1 − θ
∗
||

2
2] ≤(1 − αnµ + α2

nB)E[||θn − θ
∗
||

2
2] + α2

nC (2.13)

that we found in our proof of Theorem 128. (Here C = K + A.)

158

2.3. STOCHASTIC GRADIENT DECENT NSW

Thrm 129. There exist positive constants a1, a2,M1 and M2

E[||θn+1 − θ
∗
||

2
2] ≤

4C
µ

1
nγ

+E[||θ0 − θ
∗
||

2
2]M1e−a1n1−γ

+ n1−2αM2e−a2n1−γ
. (2.14)

Proof. Letting zn = E[||θn − θ∗||22]. Applying Lemma 119 gives that

zn+1 ≤ z0

n∏
k=0

(1 − αkµ + α2
kB)︸ ︷︷ ︸

=:Fn

+

n∑
m=0

Cα2
m

n∏
j=m+1

(1 − αkµ + α2
kB)

︸ ︷︷ ︸
=:Gn

We now bound Fn and Gn. First, Fn, assuming µ
2 ≥ αkB we get

Fn ≤ exp

−µ2 ∑
k

αk


For Gn we split the sum down the middle and bound the two parts:

Gn =

n∑
m=n/2

Cα2
m

n∏
j=m+1

(1 − αkµ + α2
kB) +

n/2∑
m=0

Cα2
m

n∏
j=m+1

(1 − αkµ + α2
kB)

≤
2C
µ
αn/2

n∑
m=n/2

αkµ

2

n∏
j=m+1

(
1 −

αkµ

2

)
︸ ︷︷ ︸

=
∏n

j=m+1(1−
αkµ

2)−
∏n

j=m(1−
αkµ

2)

+

 n∑
m=0

Cα2
m

 n∏
j=n/2

(1 −
αkµ

2
)

≤
2C
µ
αn/2

1 − n∏
j=n/2

(
1 −

αkµ

2

) +

 n∑
m=0

Cα2
m

 exp

−µ2
n∑

k=n/2

αk

 .
Putting our bounds on Fn and Gn together then gives

zn+1 ≤
2C
µ
αn/2 + z0 exp

−µ2 ∑
k

αk

 +

 n∑
m=0

Cα2
m

 exp

−µ2
n∑

j=n/2

αk


Letting αn = n−γ and noting

∑n
k=1 n−γ =

∫ n

1
x−γdx+M = (x1−γ

−1)/(1−γ)+M
for a constant M. We get that

zn+1 ≤
4C
µnγ

+ z0M1 exp
{
−
µn1−γ

2(1 − γ)

}
+ n1−2αM2 exp

−
µ(1 −

(
1
2

)1−γ
)

2(1 − γ)
n1−γ

 .
�

159

2.3. STOCHASTIC GRADIENT DECENT NSW

Rmk 130. Notice the order of magnitude achieved is correct (assum-
ing the original inequality in (2.13) is tight). To see this notice that the
product for Gn above behaves as the intergral to which we can apply
integration by parts:∫ n

1

1
x2α e−

∫ n
x

1
yα dydx =

∫ n

1

1
xα︸︷︷︸
u

1
xα

e−
∫ n

x
1

yα dy︸ ︷︷ ︸
dv

dx

=
[1
xα

e−
∫ n

x
1

yα dy
]n

1︸ ︷︷ ︸
1

nα −e−
∫ n
1 yαdy

+

∫ n

1

α

xα−1 e−
∫ n

x
1

yα dy
≥

1
nα

which suggests that the convergence rate of 1
nα found for this term is

of the correct order of magnitude.

160

2.3. STOCHASTIC GRADIENT DECENT NSW

Exercises
We now give some variants of Lemma 119 and Theorem 129.

Ex 131. a) Show that if

z(t + 1) ≤ (1 − α(t))z(t) + α(t)β(t)z
1
2 + α(t)2c(t)

then

z(T + 1) ≤ z(0)
T∏

t=1

(
1 −

α
2

)
+

T∑
t=1

(
α(t)2c(t) + α(t)

β2(t)
2

) T∏
s=t+1

(
1 −

α(t)
2

)
(2.15)

[Hint: βz
1
2 ≤ β2/2 + z/2]

b) Show that if we apply a stochastic approximation update where
there is a deterministic bias, β(t), at each time, i.e.

x(t + 1) = x(t) + α(t)
(
G(x(t)) + ε(t) + β(t)

)
then show that (2.15) holds with z(t) = E[||x(t) − x?||2].
c) Given β(t) = 1

tγβ
derive a bound similar to Theorem 129.

Although we deal with L2 convergence in Theorem ??. We apply
a concentration bound using the Azuma Hoefding Inequalty.

Ex 132. a) Show that if

z(t + 1) − z(t) ≤ −α(t)z(t) + αtε(t) + α(t)2c(t)

where ε(t) is a martingale difference sequence then

z(T + 1) ≤z(0)
T∏

t=1

(1 − α(t)) +

T∑
t=1

c(t)α(t)2
T∏

s=t+1

(1 − α(t))

+

T∑
t=1

ε(t)α(t)
T∏

s=t+1

(1 − α(t))

b) Show with probability at least 1 − δ,

z(T + 1) ≤z(0)
T∏

t=1

(1 − α(t)) +

T∑
t=1

c(t)α(t)2
T∏

s=t+1

(1 − α(t))

+

2 log
(2
δ

) T∑
t=1

ε2
maxα

2
t

T∏
s=t+1

(1 − α(t))


1
2

161

2.3. STOCHASTIC GRADIENT DECENT NSW

(Hint: apply Azuma-Hoeffding)
c) Under the assumptions of Theorem 129, show that if

θ(t + 1) = θ(t) + α(t) (G(θ(t)) + ε(t))

then (by expanding ||θ(t) − θ?||) it holds that

||θ(t + 1) − θ?|| ≤
(
1 − µα(t)

)
||θ(t) − θ?|| + α(t)2εmax

+ α(t)(θ(t) − θ?) · ε(t) + α(t)(G(θ(t)) − G(θ?)) · ε(t) .

d) Combine parts a) and b) to give a high probability bound for stochas-
tic gradient descent.

Ex 133 (Proximal Algorithm). 1) Show that the gradient descent step

θ̂ = θ − α∇F(θ) ,

solves to the optimization problem, as follows,

θ̂ = argmin
φ

{
(φ − θ)>∇F(θ) +

1
2α
||φ − θ||2

}
.

2) Argue that small values of α this is close to the optimization

θ̂ = min
φ

{
F(φ) +

1
2α
||φ − θ||2

}
(The above minimization is often called the proximal operator or prox-
imal optimization. This idea is you want to optimize F(φ) but there is
a cost for the proximity away from start θ(t).)

3) Show that the proximal optimization is equivalent to the optimiza-
tion

min
φ

F(φ) subject to ||φ − θ(t)||2 ≤ c .

Ex 134 (Natural Gradients). We consider optimization over a param-
eterized set of probability distributions (pθ : θ ∈ Θ). We consider
an alternative to gradient descent minimization of some loss function
F(θ) = L(pθ). Specifically, gradient descent would give

θ̂ = θ − α∇F(θ) .

162

2.3. STOCHASTIC GRADIENT DECENT NSW

i) Argue that the gradient descent update above is dependent on the
parameterization used.
(I.e. if we changed coordinates to φ ∈ Φ then the step rule will change.)

ii) Argue that the following optimization does not depend on the pa-
rameterization used (and compare with Ex 133 part 3))

min
θ′

F(θ′) := L(pθ′) subject to D(pθ||pθ′) ≤ c .

iii) Argue that the optimization in part i) approximated by the opti-
mization

θ̂ = argmin
θ′

{
(θ′ − θ)∇F(θ) +

1
2α

D(pθ||pθ′)
}
.

iv) Argue that

D(pθ||pθ+δ) = δ>J(θ)δ + o(δ2) ,

where J(θ) is the Fisher Information matrix J(θ) = Eθ[−∇2
θ log pθ(x)].

v) Argue that the solution to the optimization to ii) can be approximated
by the update

θ̂ = θ − αJ(θ)−1
∇F(θ) .

(The update above is known as the natural gradient).

163

2.4. ASYNCHRONOUS UPDATE NSW

2.4 Asynchronous Update
We now consider Robbins-Munro from a slightly different perspec-
tive. Suppose we have a continuous function F : Rp

→ Rp and we
wish to find a fixed point x∗ such that F(x∗) = x∗. We assume that F(·)
is a contraction namely that, for some β ∈ (0, 1),

||F(x) − F(y)||∞ ≤ β||x − y||∞ . (2.16)

Here ||x||∞ = maxi=1,...,p |xi|. (Note this contraction condition implies the
existence of a fixed point). (Note the previous analysis was some-
what restricted to euclidean space.) If we suppose that we do not
observe F(x) but instead some perturbed version whose mean is F(x),
then we can perform the Robbins-Munro update for each compo-
nent i = 1, ...p:

xi(t + 1) = xi(t) + αi(t)(Fi(x(t)) − xi(t) + εi(t)) (RM-Async)

where αi(t) is a sequence such that for all i∑
t

αi(t) = ∞,
∑

t

α2
i (t) < ∞ . (RM step)

Further we suppose that εi(t − 1) is measurable with respect to Ft,
the filtration generated by {αi(s), xi(s)}s≤t measurable and

E[εi(t)|Ft] = 0 . (2.17)

We assume both the functions F(x) and the noise εi(t) are bounded.3

Asynchonous update. Note that in the above we let the step rule
depend on i. For instance at each time t we could chose to update
one component only at each step, e.g., to update component i only,
we would set α j(t) = 0 for all j , i. Thus we can consider this step
rule to be asynchronous.
Convergence result. We can analyze the convergence of this simi-
larly

Theorem 16. Suppose that F(·) is a contraction with respect to || · ||∞
(2.16), suppose the vector x(t) obeys the step rule (RM-Async) with

3However, we remark that this assumption can be relaxed significantly. At
some expense in doubling the length of the proof. See [49].

164

2.4. ASYNCHRONOUS UPDATE NSW

step sizes satisfying (RM step) and further suppose that F(x) and
noise terms are bounded, then

lim
t→∞

x(t) = x∗

where x∗ is the fixed point F(x∗) = x∗.

Proof of Theorem 16. We need to take some time to set up notation
and prove three short Lemmas. After this we can wrap up the proof.

First, we may assume with out loss of generality that x∗ = 0, since
the recursion above is equivalent to

xi(t + 1) − x∗ = xi(t) − x∗ + αi(t)(Fi(x(t)) − Fi(x∗) − xi(t) + x∗ + εi(t)) .

Given the assumption on Fi(x(t)) + εi(t) being bounded, we have
that that ||x(t)||∞ ≤ D0 for all t, for some D0 < ∞. Further define

Dk+1 = β(1 + 2ε)Dk .

Here we choose ε > 0 so that (1 + 2ε)β < 1 so that Dk → 0. By
induction, we will show that, given ||x(t)||∞ < Dk for all t ≥ τk for some
τl, then there exists a τk+1 such that for all t ≥ τk+1

||x(t)||∞ < Dk+1

We use two recursions to bound the behavior of xi(t):

Wi(t + 1) = (1 − αi(t))Wi(t) + αi(t)εi(t)
Yi(t + 1) = (1 − αi(t))Yi(t) + αi(t)βDk .

for t ≥ τk, where Wi(τk) = 0 and Y(τk) = 0. We use Wi(t) to sum-
marize the effect of noise on the recursion for xi(t) and we use Yi(t)
to bound the error arising from the function Fi(x) in the recursion.
Specifically we show that

|xi(t) −Wi(t)| ≤ Yi(t)

in Lemma 12 below. Further we notice that is a Robbin-Munro
recursion for Wi(t) to go to zero and Yi(t) to go to βDk.

Lemma 12. ∀t0 ≥ τk

|xi(t) −Wi(t)| ≤ Yi(t)

165

2.4. ASYNCHRONOUS UPDATE NSW

Proof. We prove the result by induction. The result is clearly true
for t = τk.

xi(t + 1) = (1 − αi(t))xi(t) + αi(t)Fi(x(t)) + αi(t)εi(t)
≤ (1 − αi(t))(Yi(t) + Wi(t)) + αi(t)βDk + αi(t)εi(t)
= Yi(t + 1) + Wi(t + 1)

In the inequality above with apply the induction hypothesis on xi(t)
and bounds of Fi. The second equality just applies the definitions of
Yi and Wi. Similar inequalities hold in the other direction and give
the result. �

Lemma 13.
lim
t→∞
|Wi(t)| = 0

Proof. We know

E[Wi(t + 1)2
|Ft] ≤ (1 − 2αi(t) + α2

i (t))W(t)2 + αi(t)2E[ε(t)2
|Ft].

From the Robbins-Siegmund Theorem (Prop 123), we know that

lim
t→∞

W(t) = 0.

�

Lemma 14.
Yi(t) −−−→

t→∞
βDk

Proof. Notice

Yi(t + 1) − βDk = (1 − αi(t))(Yi(t) − βDk) = ... =

 t∏
s=1

(1 − αi(s))

 (Yi(0) − βDk)

The result holds since
∑

t αi(t) = ∞. �

We can now prove Theorem 16.

Proof of Theorem 16. We know that ||x(t)||∞ ≤ D0 for all t and we as-
sume ||x(t)||∞ ≤ Dk for all t ≥ τk. By Lemma 12 and then by Lemmas
13 and 14

|xi(t)| ≤ Yi(t) + |Wi(t)| −−−→
t→∞

βDk

Thus these exists τk+1 such that supt≥τk+1
||x(t)||∞ ≤ Dk+1. Thus by in-

duction we see that supt≥τk
||x(t)||∞ decreases through sequence of

levels Dk as k→∞, thus x(t) goes to zero as required. �

166

2.5. ODE METHOD FOR STOCHASTIC APPROXIMATION NSW

2.5 ODEmethod for Stochastic Approxima-
tion

We consider the Robbins-Monro update

xn+1 = xn + αn[g(xn) + εn]

The condition for convergence used was

∞∑
n=0

αn = ∞,
∞∑

n=0

α2
n < ∞ . (RM)

Put informally, the condition
∑

n αn is used to keep the process mov-
ing [albeit inn decreasingly small increments] while the condition∑

n α
2
n ensures that the noise from the process goes to zero.

Given that noise is suppressed and increments get small, it is
natural to ask how close the above process is to the ordinary differ-
ential equation

dz
dt

= g(z(t)).

Moreover, can Lyapunov stability results [that we applied earlier] be
directly applied to prove the the convergence of the corresponding
stochastic approximation scheme? Often, the answer is yes. And
this has certain conceptual advantages, since the Lyapunov condi-
tions described earlier can be quite straightforward to establish and
also we don’t need to directly deal with the compounding of small
stochastic errors from the sequence εn.

The set up. The idea is to let

tn =

n∑
k=0

αk and T = {tn : n ∈ Z+} .

Here tn represents the amount of “time" that the process has been
running for. We then let

x(t) = xn, for t = tn.4

4We could also linearly interpolate between these terms to define x(t) for all
t ∈ R+, but we choose not to do this as it provides no new insight and only serves
to lengthen the proof.

167

2.5. ODE METHOD FOR STOCHASTIC APPROXIMATION NSW

We let zm be the solution above o.d.e. started at xm at time tm, that
is

dzm

dt
= g(zm(t)), and zm(tm) = xm.

We then compare x(t) and zm(t) to see how much error has accumu-
lated since time tm. More specifically we are interested in

sup
t∈[tm,tm+T]∩T

||x(t) − zm(t)||L2 .

Assumptions. In addition to the Robbins-Monro condition (RM),
we make the following assumptions.

• g is Lipschitz continuous.

• For Fn = (xm, εm−1 : m ≤ n)

E[εn|Fn] = 0

and supnE[ε2] < ∞.

Main result. A key result that we will prove is the following propo-
sition

Proposition 3.

lim
m→∞

sup
t∈[tm,tm+T]∩T

||x(t) − zm(t)||L2 = 0 .

where convergence holds with probability 1 and in L2.5

Proof. Notice

zm(tn) = xm +

∫ tn

tm

zm(u)du

while

x(tn) = xm +

n−1∑
k=m

αkg(xk) +

n−1∑
k=m

αkεk = xm +

∫ tn

tm

g(x(bucα))du +

n−1∑
k=m

αkεk

5Convergence in L2 occur assuming || · || is the usual Euclidean distance.

168

2.5. ODE METHOD FOR STOCHASTIC APPROXIMATION NSW

where bucα = max{tn : tn ≤ u}. So

||zm(tn) − x(tn)|| ≤
∣∣∣∣∣∣∣∣ n−1∑

k=m

αkεk

∣∣∣∣∣∣∣∣ +

∫ tn

tm

||g(zm(u)) − g(x(bucα))||du

≤

∣∣∣∣∣∣∣∣ n−1∑
k=m

αkεk

∣∣∣∣∣∣∣∣ +

∫ tn

tm

||zm(u) − x(bucα)||du

which implies by Gronwall’s Lemma [Theorem 166]

||zm(tn) − x(tn)|| ≤
∣∣∣∣∣∣∣∣ n−1∑

k=m

αkεk

∣∣∣∣∣∣∣∣eL(tn−tm)
≤

∣∣∣∣∣∣Mn −Mm

∣∣∣∣∣∣eLT . (2.18)

where the final inequality holds for tn such that tn − tm ≤ T, and we
define Mn =

∑n
k=1 αkεk. Notice that Mn, n ∈ N, is a martingale and

further

EM2
n =

n∑
k=1

αE[ε2
k] ≤ K

∞∑
k=1

α2
k < ∞

where K = maxkE[ε2
k]. Thus Mn is an L2 bounded Martingale and

thus convergence with probability 1 and in L2. Consequently Mn is
a cauchy sequence, meaning

lim
m→∞

sup
n≥m
||Mn −Mm|| = 0

with probability 1 and in L2. Applying this to (2.18) gives the re-
quired result

lim
m→∞

sup
t∈[tm,tm+T]∩T

||zm(t) − x(t)|| = 0 .

�

Applying the o.d.e limit. Before we focus on the proof of Proposi-
tion 3, it’s worth explaining how it can be applied. The main idea
is to

1. Check that the o.d.e. convergence by showing gets close to the
some desired set of points X? in T time units for each initial
condition xn, n ∈N.

2. Then apply Proposition 3 to show that the stochastic approxi-
mation is also close to the o.d.e at time T.

169

2.5. ODE METHOD FOR STOCHASTIC APPROXIMATION NSW

This is sufficient to show that the stochastic approximation con-
verges to X?.

Here, we combine La Salle’s Invariance Principle, Theorem 9,
with Proposition 3, though, in principle, we could have considered
any of the ode results from Section 2.1. We assume that the as-
sumptions of Proposition 3 are satisfied. In addition we assume,

• Almost surely,
sup

n
||xn|| < ∞ .

Further we recall that for La Salle’s Invariance Principle, we as-
sumed there was a Lyapunov function L : Rd

→ R+ such that

• L is continuously differentiable .

• g(x) · ∇L(x) ≤ 0 for all x.

• The sets {x : L(x) ≤ l} are compact for all l.

Also we defined X? := {x : g(x) · ∇L(x) = 0}. Recall that La Salle’s
Invariance Principle stated that for all solutions to the o.d.e. dz/dt =
g(z(t)) with z(0) ∈ {x : L(x) ≤ l} there exists a T such that maxx?∈X? |z(t)−
x?| ≤ ε for all t ≥ T.

Theorem 17. For the stochastic approximation scheme

xn+1 = xn + αn[g(xn) + εn]

described in Proposition 3 and given a Lyapunov function L as de-
scribed above, it holds, with probability 1,

xn −−−→
n→∞

X
?

Proof. First we check that the o.d.e solutions zm(t) considered in
Proposition 3 are going to satisfy the conditions of La Salle. In par-
ticular, La Salle’s result requires o.d.e. solutions to all belong to
some compact set. Notice, since we assume that C := supn ||xn|| < ∞
we can let l = max{L(x) : ||x|| ≤ X} and take X = {x : L(x) ≤ l}. Since
L(z(t)) is decreasing for all solutions to the o.d.e. We see that zm(t) ∈ X
for all m and t ≥ tm.

Next we set up the bounds from the two results. From La Salle’s
Invariance Principle, we know that ∀ε > 0 ∃T > 0 such that ∀t ≥ T
and ∀m

min
x?
|zm(tm + t) − x?| ≤ ε .

170

2.5. ODE METHOD FOR STOCHASTIC APPROXIMATION NSW

Taking this choice of T, we know from Proposition 3 that there exists
m? s.t. ∀m > m?

sup
t∈[tm,tm+2T]∩T

||x(t) − zm(t)|| ≤ ε.

Notice we can take m? suitably large so that αm =: tm− tm−1 ≤ T for all
m ≥ m?. Notice this implies that⋃

m:m≥m?

[tm + T, tm + 2T] = [tm? + T,∞) .

Now notice that if n is such that tn ∈ [tm + T, tm + 2T] for some m ≥ m?

then combining the inequalities above, gives that

min
x?
||xn − x?|| ≤ ||xn − zm(tn)|| + min

x?
||zm(tn) − x?|| ≤ 2ε .

Thus we see, with the union above, that for all tn ≥ tm + T it holds
that minx? ||xn − x?|| ≤ 2ε. In other words xn → X

? as required. �

Exercises
Ex 135 (A Finite Time Bound). a) Using the notation from Prop 3.
Show that

||x? − xn||L2 ≤ ||x
?
− zm(tn)||L2 +

∣∣∣∣∣∣ n∑
k=m

αkεk

∣∣∣∣∣∣
L2

eKT

b) Argue that if αn = C
n , x? = 0, E[ε2

k] < σ2, xn is bounded and ż = −βz
then

||x? − xn||L2 = O
(
n
−

β

2(β+K+ 1
2)
)

(Note the above bound is slightly worse than Theorem 129. This is
because Gronwall’s lemma is quite a loose bound, where as Theorem
129 applies and integrating factor which dampens stochastic terms.)

171

2.5. ODE METHOD FOR STOCHASTIC APPROXIMATION NSW

References
The o.d.e approach to stochastic approximation was initiated by
Ljung [33]. Shortly after it is was extensively developed by Kushner,
see [29] and [28] for two text book accounts. The arguments above
loosely follow the excellent text of Borkar [11]. We shorten the proof
in several ways and consider L2 convergence. A further text with a
general treatment is Benveniste et al. [5].

172

2.6. ONLINE CONVEX OPTIMIZATION NSW

2.6 Online Convex Optimization
In online convex optimization, we sequentially receive convex func-
tions and our task is to sequentially minimize the aggregate of these.
The assumptions on these convex functions can be very mild. Yet,
surprisingly, very good bounds can be derived. For instance, stochas-
tic gradient descent can be recast as an online convex optimiza-
tion, and the bound derived are competitive with the best finite time
bounds.

Setup. For a convex set Θ and discrete time t = 1, 2, ..., we consider
the setting where at time t :

1. An unknown convex loss function, lt : Θ→ R, is set;

2. The algorithm choses θt ∈ Θ, and we incur loss lt(θt);

3. The gradient ∇lt(θt) is revealed.
Since lt is not know when we chose θt, there is little hope of mini-
mizing lt itself. Instead, we measure the quality of the algorithm in
terms of its regret :

Rg(T) =

T∑
t=1

lt(θt) −min
θ∈Θ

T∑
t=1

lt(θ) . (2.19)

The regret, Rg(T), compares the aggregate loss of the algorithm with
the best fixed choice. A good algorithm should have small regret.
Remark 136. Although minimizing each individual function lt is not
feasible, it is reasonable to expect some algorithms to have low regret.
Think of it this way: the best fixed choice θ?t ∈ argminθ

∑t
s=1 ls(θ) should

have a roughly equal contribution from each loss function. Whenmov-
ing on to the next time step, θ?t should not be too far from θ?t−1 and
the size of the change should be about 1/t (if each term contributes
equally to the change). Further if we are to move towards to opti-
mum then direction should not be far off the steepest decent direction
∇lt(θt). This suggests using gradient descent with a 1/t set size:

θt+1 = θt −
α
t
∇lt(θt)

should track the changes in θ∗t . This works out, though we need to
be careful about the assumptions that we make as there are counter-
examples, and if the functions lt are not sufficiently smooth then we
need to compromise on our rate of convergence.

173

2.6. ONLINE CONVEX OPTIMIZATION NSW

We will prove results for both convex and strongly convex func-
tions. Recall that a differentiable function is convex when

L(φ) − L(θ) ≥ (φ − θ)∇L(θ) .

We say L(θ) is a-strongly convex if

L(φ) − L(θ) ≥ (φ − θ)∇L(θ) +
a
2
||φ − θ||2 .

The following lemma follows quite immediately from the definition.

Lemma 15. If lt : Θ→ R is a-strongly convex (including a = 0) then

T∑
t=1

(θt − θ)∇lt(θt) ≥
T∑

t=1

a
2
||θt − θ||

2 +

T∑
t=1

lt(θt) − lt(θ) .

Proof. Apply the definition of a-strongly convex, rearrange and sum.
�

Notice in the above lemma the final term corresponds to the re-
gret, and the penultimate sum can only act to reduce the regret. So
the above lemma shows that if we get a handle on

T∑
t=1

(θt − θ
?)∇lt(θt) (2.20)

then low regret may be achievable. The follow algorithm is one of a
suite of algorithms that can manage the above expression.

Projected Gradient Descent. We analyse the following projected
gradient descent algorithm:

θt+1 = ΠΘ (θt − αt∇t(θt)) .

Here ∇t(θ) = ∇lt(θ) and ΠΘ(θ) is the projection of θ onto Θ. The
following bounds the gradient sum (2.20) in terms of its step sizes.

Lemma 16. For any function ∇t(θ) and θt, as above, then for all θ ∈ Θ

T∑
t=1

(θt − θ)∇t(θt) ≤
T∑

t=1

||θt − θ||
2

2

(1
αt
−

1
αt+1

)
+

T∑
t=1

αt

2
||∇t(θt)||2 .

174

2.6. ONLINE CONVEX OPTIMIZATION NSW

Proof. For any θ ∈ Θ,

||θt+1 − θ||
2 = ||ΠΘ (θt − αt∇t(θt)) −ΠΘ(θ)||2

≤ ||θt − αt∇t(θt) − θ||
2

≤ ||θt − θ||
2 + α2

t ||∇t(θt)||2 − 2αt (θt − θ) · ∇t(θt) .

Rearranging and summing gives

T∑
t=1

(θt − θ) · ∇t(θt)

≤

T∑
t=1

[1
2αt
||θt − θ||

2
−

1
2αt
||θt+1 − θ||

2
]

+

T∑
t=1

αt

2
||∇t(θt)||2

= −
1
αT
||θT+1 − θ||

2 +

T∑
t=1

||θt − θ||
2
[1
αt
−

1
αt−1

]
+

T∑
t=1

αt

2
||∇t(θt)||2

≤

T∑
t=1

||θt − θ||
2
[1
αt
−

1
αt−1

]
+

T∑
t=1

αt

2
||∇t(θt)||2 .

In the equality above we rearrange the order of summation in the
square brackets (wlog. we take ||θ1 − θ||2/α0 := 0). The above expres-
sion gives the required bound. �

With Lemmas 15 and 16 in place, we can prove the following
theorem. This result is the discrete analogue of Theorem 10.

Theorem 18. i) If lt is convex and we take αt = 1/
√

T then

Rg(T) ≤
(
θ2

max

2
+ ∇2

max

)
√

T .

ii) If lt is a-strongly convex for all t and we take αt = 1/(aT) then

Rg(T) ≤
∇

2
max

2a

(
1 + log T

)
.

Here θmax = maxθ,φ∈Θ ||θ − φ|| and ∇max = maxt ||∇t(θt)||

175

2.6. ONLINE CONVEX OPTIMIZATION NSW

Proof. Combining Lemma 15 and 16, we have that

Rg(T) =

T∑
t=1

lt(θt) − lt(θ) ≤
T∑

t=1

(θt − θ)∇t(θt) −
a
2
||θt − θ||

2

≤

T∑
t=1

||θt − θ||
2

2

(1
αt
−

1
αt+1
−

a
2

)
+

T∑
t=1

αt

2
||∇t(θt)||2

≤
θ2

max

2

T∑
t=1

(1
αt
−

1
αt+1
−

a
2

)
+
∇

2
max

2

T∑
t=1

αt . (2.21)

Now for part i), where a = 0, if we let αt = 1
√

T
then

T∑
t=1

(1
αt
−

1
αt+1
−

a
2

)
=

T∑
t=1

(√
t −
√

t + 1
)
≤

√

T,

and
T∑

t=1

αt =

T∑
t=1

1
√

T
≤

√
T − 1/2

1 − 1/2
≤ 2
√

T .

(The inequality above is proven in Lemma 26) Substituting these
two inequalities into (2.21) gives the regret bound in part i).

For part ii) with a > 0 and αt = 1
2at we have

T∑
t=1

(1
αt
−

1
αt+1
−

a
2

)
≤ 0

and
T∑

t=1

αT ≤
1
2a

(
1 + log T

)
.

(The inequality above is proven in Lemma 26) Substituting the above
two inequalities into (2.21) gives the regret bound in part ii).

�

176

Chapter 3

Bandits and Experts

177

3.1. STOCHASTIC MULTI-ARMED BANDIT NSW

3.1 Stochastic Multi-Armed Bandit

• Lai and Robbins lower bound.

• UCB policy and optimality.

We discuss a canonical multi-arm bandit setting. The stochas-
tic multi-arm bandit with Bernoulli distributed rewards. We let
a = 1, ...,N index the set of arms. We let A = {1, ...,N} be the set
of arms. If you play the arm a at time t ∈ N, you receive rewards
rt(a) which are independent and identically distributed in t. How-
ever, the distribution between arms may change.

We let r̄(a) be the mean of arm a. We want to find the machine
with highest mean reward. We define

r∗ := max
a

r̄(a) and a∗ ∈ argmax
a

r̄(a)

and also we define

∆a = r? − r̄(a) and ∆ = min{∆a : ∆a > 0} .

We do not know these averages in advance and we only know the
rewards from the times that we play each machine – we are only
allowed to play one machine per unit time.

We let r̂t(a) denote the empirical mean of arm a after it has been
played t times. Given the central limit theorem and the Azume-
Heoffding bound (see appendix), we can assume the following
Assumption. There is some function Λ(∆) positive for ∆ > 0 such
that

P(|r̂t(a) − r̄t(a)| ≥ ∆/2) ≤ 2e−t∆2/c .

Many reasonably behaved distributions obey this condition. For
instance, any bounded random variable and Gaussian random vari-
ables. This assumption can be relaxed.

A policy chooses a sequence of arms, πt at times t ∈ N as a
function of the rewards previously experienced, i.e. as a function
of {πs, rs(πs)}t−1

s=1. As with MDPs, the expected cumulative reward of
policy π at time T is

RT(π) = E

[T∑
t=1

rt(πt)
]

178

3.1. STOCHASTIC MULTI-ARMED BANDIT NSW

Def 137 (Regret). The regret of policy π = {πt}
T
t=1 at time T is1

Rg(T) = max
a=1,...,N

RT(a) − RT(π) .

The regret is a frequently used metric of choice for bandit prob-
lems and many other areas of statistical learning.

The following lemma shows that we can analyse the regret by
understanding the number of times we play a sub-optimal arm or
equivalently calculating the probability that we play a sub-optimal
arm.

Lemma 17. For a multi-arm bandit problem with Bernoulli rewards

Rg(T) =

N∑
a=1

[r? − r̄(a)]E[Ta]

=

T∑
t=1

N∑
a=1

[r? − r̄(a)]P(πt = a)

where Ta is the number of times arm a is played by time T.

Proof. We can expand the reward of the optimal arm with

RT(a?) = r?T = r?
∑

a

E[Ta] (3.1)

and, by independence, we can replace the reward with its expecta-
tion as follows

RT(π) = E

 T∑
t=1

∑
a

p(a)I[πt = a]

 =
∑

a

p(a)E[Ta] . (3.2)

Now subtracting (3.2) from (3.1) gives the regret and the first equal-
ity. The second equality follows immediately from the fact that

T∑
t=1

P(πt = a) = E[Ta] .

�

1Note the regret depends on the policy, but for convenience we do not explicitly
include this in our notation when it is clear what policy is being considered.

179

3.1. STOCHASTIC MULTI-ARMED BANDIT NSW

Explore and Commit.
Explore and commit gives a simple way of understanding the explore-
exploit trade-off and why a regret of O(log T) is achievable.

Suppose we implement the following policy:

Explore-and-Commit.

1. We play each arm t times.

2. We play the best arm there after.

Given we are going to run our bandit experiment for T rounds,
we now look for a good choice of t.

Proposition 4. For t = C log T, the regret of explore-and-commit is

Rg(T) ≤
[
C log T +

4
T∆2C/c−1

]
·

N∑
a=1

∆a

In the above, notice we need C∆2/c > 1 to get good results for
large T and we don’t know ∆ in advance. This is a weakness.

Proof. Let A? = {a : r(a) = maxa′ r(a′)} be the set of optimal arms. For
any a < A? and a? ∈ A?,

P(r̂t(a) > r̂t(a?)) ≤ P(|r̂t(a)− r̄(a)| > ∆/2) +P(|r̂t(a?)− r̄(a?)| > ∆/2) ≤ 4e−t∆2/c .

I.e. either a or a? must observe rewards away from their expected
mean for a to beat a? in the explore phase.

We can split the regret into its explore and commit phases and
then apply the above inequality:

Rg(T) ≤ t
∑

a

∆a + (T −Nt)
∑
a<A

∆aP(r̂t(a) > r̂t(a?))

≤

∑
a

∆a

[
t + 4Te−t∆2/c

]
.

(At this point it is worth noting that the term in square brackets can
easily be minimized, and it is minimized at t = (c/∆2) log(4∆2T/c). So
basically t = O(log T) is the right amount of exploration.) Substitut-
ing in t = C log T to the term in square brackets gives the result. �

180

3.1. STOCHASTIC MULTI-ARMED BANDIT NSW

Deterministic Exploration.
The exploration phase in explore and commit does not have to all
happen that the beginning. An easy way to deal with exploration is
to decide in advance when you are going to explore each arm.

Specifically, for each arm a take Ea(t) ∈ Z+ where Ea(t) gives the
number of times arm a is explored by time t.2

Deterministic Exploration. At time t,

1. If Ea(t) > Ea(t − 1) play arm a.

2. If no such arm exists, play the arm with highest reward found
during exploration.

If Ei(T) ∼ CT log T where CT is a slowly increasing function (think
CT = log(e + log(T))) then a very similar proof to the explore and
commit proof gives

Rg(T) = O(CT log T)

This is an exercise.

ε-Greedy.
Rather tracking how long you need to play each arm a simple heuris-
tic, with a similar proof to deterministic exploration is to randomize.

ε-Greedy. At time t

1. with probability εt, play an arm uniformly at random.

2. Else, with probability 1− εt, play the arm with highest reward.

The proof for this policy is very similar to the deterministic ex-
ploration case. (We just need to apply a [Bernstein] concentration
bounds to the amount of exploration.) Similar to before if εt = Ct/t
for a slowly increasing function then

Rg(T) = O(CT log T)

Again this is an exercise for the reader.

2Here we require that
∑

a(Ea(t) − Ea(t − 1)) ∈ {0, 1}.

181

3.1. STOCHASTIC MULTI-ARMED BANDIT NSW

At this point, it is worth noting that we can get arbitrarily close
to log T with bounds and simple policies. So the moral of the story
so far is: no matter what you do, as long as you explore every arm
a bit more that log T times and you spend the rest of your time on
the best arm seen so far then you should have a good regret bound.

As we see shortly, with the Lai-Robbins lower bound, Rg(T) =
O(log T) is the right rate of convergence for regret in the stochas-
tic setting. We can also achieve this bound with a policy called
Upper-Confidence Bound (UCB). The idea is to construct a statis-
tical confidence bound and then choose the arm with confidence
bound (empirical mean plus confidence error). UCB is a fantastic
policy used all over the place. However, it should be noted that in
practice it does not always generalize well. Thus one should fall
back on simpler policies, remembering the rules of thumb devel-
oped so far.

182

3.2. UPPER CONFIDENCE BOUND. NSW

3.2 Upper Confidence Bound.
The proofs so far have relied on the bound

P(|r̂t(a) − r̄t(a)| > ε) ≤ 2e−tε2/c . (3.3)

We noted that if we take t ≈ log T then the probability of choosing
the wrong arm goes down very fast and does not contribute to the
regret bound. Basically, the regret of log T occurs because of the
t ≈ log T arm pulls that were required to get the concentration in
the first place.

Based on this, the Upper Confidence Bound algorithm looks at
the values of ε that guarantee this fast decay in probability. It as-
sesses how confident are we about each estimate on the mean and
then chooses the arm with highest mean plus error. Specifically,
for t and ta ≤ t, we define εta,t to be such that

P(|r̂ta(a) − r̄(a)| > εta,t) ≤
1
t2 . (3.4)

Given (3.3) this holds for ε such that

2e−taε2/c =
1
t

which implies εta,t =

√
c log 2t

ta
.

From now on we will take εta,t as given above, where t is the number
of rounds of the algorithm and ta is the number of times arm a has
been selected by time t.

UCB choses the highest empirical mean plus error:

Upper-Confidence Bound (UCB).

• Choose any arm such that

a ∈ argmax
a∈A

r̂ta(a) + εta,t where εta,t =

√
c log 2t

ta
.

Notice for UCB algorithm so long as arm a is not played the log t
will deterministically keep increasing (and eventually) will dominate
forcing the policy to explore a. Notice we need to monitor what is
going on with all arms at all times implement an iteration of UCB.
The following result shows that we get a much more crisp regret
bound for UCB.

183

3.2. UPPER CONFIDENCE BOUND. NSW

Theorem 19. We regret of UCB is

Rg(T) ≤
∑
a∈A

4c
∆a

log 2T + 4
∑
a∈A

∆a .

Proof. Given Lemma 17, we investigate the probability that UCB
might select a sub-optimal arm. We will see that it occurs either be-
cause of insufficient exploration (which we will see is an issue that
can only occur a small –order log T– number of times) or because of
insufficient concentration (which is unlikely to happen because of
the way we cooked-up εta,t).

Specifically, suppose at time t the policy chooses πt = a for a <
argmax r̄(a′) then

r̂ta(a) + εta,t ≥ r̂ta?
(a?) + εta? ,t (3.5)

where a? is some arm in argmax r̄(a′).
In additional to playing arm a at time t, let’s first suppose that

both arms are concentrated about their means. Specifically, the
following event holds

Et =
{
|r̂ta(a) − r̄(a)| ≤ εta,t

}
∩

{
|r̂ta?

(a?) − r̄(a?)| ≤ εta? ,t

}
Then using the bounds in Et to replace r̂ with r̄ in (3.5) implies that

r̄(a) + 2εta,t ≥ r̂ta(a) + εta,t ≥ r̂ta?
(a?) + εta? ,t ≥ r̄(a?),

which3 in turn implies

∆a = r̄(a?) − r̄(a) ≤ 2εta,t = 2

√
c log 2t

ta
≤ 2

√
c log 2T

ta
.

So we have a bound on how much we explored arm a:

ta ≤
4c
∆2

a
log 2T . (3.6)

We can interpret this as saying: when we have good concentration,
we choose the wrong arm, a, because the amount of exploration ta

was too small. And critically we can see what the right amount of
exploration for UCB is quantified in (3.6).

3Note we are fortunate that we don’t need to know εta? ,t in the above bound.

184

3.2. UPPER CONFIDENCE BOUND. NSW

Now we can also bound the probability that the event E does not
hold. That is, we a union bound and (3.4), we have

P(Ec
t) ≤ P(|r̂ta(a) − r̄(a)| > εta,t) + P(|r̂ta?

(a?) − r̄(a?)| > εta? ,t) (3.7)

≤
2
t2 (3.8)

Putting everything together,

E[Ta] = E
[T∑

t=1

I[πt = a]
]

= E
[T∑

t=1

I[πt = a,Et] + I[πt = a,Ec
t]
]

≤
4c
∆2

a
log 2T +

T∑
t=1

P(πt = a,Ec
t)

≤
4c
∆2

a
log 2T +

T∑
t=1

2
t2

≤
4c
∆2

a
log 2T + 4 .

In the first inequality above apply (3.6), i.e. there can be at most
4c
∆2

a
log 2T times where a is played and Et holds. In the second inequal-

ity we apply (3.7) [after noting that P(πt = a,Ec
t) ≤ P(Ec

t)]. In the final
inequality, we use the fact that

∑
∞

t=1 1/t2
≤ 1 +

∫
∞

1
1
t dt = 2.

The result then follows by applying the above bound to the iden-
tity in Lemma 17, that is

Rg(T) =
∑

a

∆aE[Ta] ≤
∑

a

4c
∆a

log 2T + 4
∑

a

∆a .

�

185

3.3. LAI AND ROBBINS LOWER BOUND. NSW

3.3 Lai and Robbins Lower Bound.
The results so far have suggest that, for independent identically
distributed arms, the correct size of the regret is of the order log T.
We now more formally prove this with the Lai and Robbins lower-
bound .

We suppose that there are N arms as described at the very be-
ginning of this section. We let Pa be the probability distribution of
the rewards from arm a ∈ A. For the Lai and Robbins lower-bound,
it is useful to think of A as a subset of size N with values from a
set of parameters Θ, i.e. A ⊂ Θ, and that Pθ is the probability dis-
tribution of rewards under the parameter choice θ. (To be concrete,
think of Θ being the interval [0, 1] and Pθ being a Bernoulli distri-
bution with parameter θ.)

Asymptotic Consistency. To have a reasonable lower-bound we
need to assume a reasonable set of polices. For instance, we need
to exclude polices that already know the reward of each arm. Lai
and Robbins consider amougst policies that are asymptotically con-
sistent, which means, for each set of arms A, for all a < A?

E[Ta] = o(Tη) (3.9)

for every η ∈ (0, 1). I.e. a policy is a "good" policy if it can do better
than any power Tη in playing sub-optimal arms. (Recall here A? is
the set of optimal arms, and Ta is the number of times we play arm
a by time T.)

The Lower Bound. The Lai–Robbins Lower Bound is the following:

Theorem 20 (Lai and Robbins).

lim inf
T→∞

E[Ta]
log T

≥
1

D(Pa||P?)

and thus

lim inf
T→∞

Rg(T)
log T

≥

∑
a∈A

∆a

D(Pa||P?)

where here D(Pa||P?) is the Relative Entropy (defined in the appendix)
between the distribution of arm a, Pa and the distribution of the opti-
mal arm, P?.

186

3.3. LAI AND ROBBINS LOWER BOUND. NSW

For independent rewards r1, ..., rt ∼ P and independent rewards
independent rewards r′1, ..., r

′

t ∈ P′, under mild conditions, there ex-
ists a function D(r′) such that

P((r1, ..., rt) ∈ C) = E′
[
e
∑t

s=1 D(r′s)I[(r1, ..., rt) ∈ C]
]

(3.10)

and

D(P||P′) = E[D(r)] . (3.11)

(The term is eD(r) is just the ratio between P(r) and P′(r) and is for-
mally called Radon-Nikodym derivative.) For the Lai Robbins lower-
bound, we also require the assumption that

D(P||Pa′)→ D(P||Pa)

as a′ → a. This is required to get the constants right in the theorem
but is not critical to the overall analysis.

We now prove the Lai and Robbins Lower-bound.

Proof. We take an increasing sequence of integers nT. We will spec-
ify it soon but for now it is enough to assume that nT = o(T). We
can lower-bound the expected number of times arm a is played as
follows:

E[Ta] ≥ nTP (Ta > nT) = nT (1 − P (Ta ≤ nT)) . (3.12)

Here we see that we want to take nT as large as possible while keep-
ing the probability P(Ta ≤ nT) away from 1. When arm a was replaced
by an arm a′ whose mean reward is the larger than each arm in A
(i.e. r̄′ > r?) then we can analyze this probability:

P′(Ta′ ≤ nT) = P′(T − Ta′ ≥ T − nT) ≤
E[T − Ta′]

T − nT
=

o(Tη)
T − nT

= o(Tη−1) .

(3.13)

In the inequality above we apply Markov’s Inequality and the asymp-
totic consistency assumption (3.9). (Note the above bound holds for
every η ∈ (0, 1) so in informal terms we could think of the above
bound as being O(T−1).)

We can change arm a for arm a′ through the change of measure
given above in (3.10). This involves the sum of independent ran-
dom variables

∑nT
k=1 D(rk) which by (3.11) and the weak law of large

numbers satisfies:

δT := P
(∣∣∣∑nT

k=1{D(rk) −D(P||P′)}
∣∣∣ > ε) −−−→

T→∞
0 .

187

3.3. LAI AND ROBBINS LOWER BOUND. NSW

Here we apply the shorthand P = Pa and P′ = Pa′.
We now have various pieces in place where we can now analyze

the probabilities P(Ta ≤ nT) as follows:

P(Ta ≤ nT)

=P
(
Ta ≤ nT, |

∑nT
k=1{D(rk) −D(P||P′)}| > ε

)
+ P

(
Ta ≤ nT, |

∑nT
k=1{D(rk) −D(P||P′)}| ≤ ε

)
(3.14)

≤P
(
|
∑nT

k=1{D(rk) −D(Pa||Pa′)}| > ε
)

+ E′
[
e
∑nT

k=1 D(r′k)I
[
Ta′ ≤ nT, |

∑nT
k=1{D(r′k) −D(P||P′)}| ≤ ε

]]
(3.15)

≤δT + enT(D(P||P′)+ε)P′(Ta′ ≤ nT) (3.16)
≤δT + enT(D(P||P′)+ε)o(Tη−1) . (3.17)

In the first equality (3.14), we split the probability according to how
close

∑nT
k=1 D(rk) is to nTD(P||P′). In the inequality (3.15), we remove

the condition {Ta ≤ nT} from the first term and apply the change of
measure to the second term by using equality (3.10). The condition
on

∑nT
k=1 D(rk) and the definition of δT yields (3.16). Finally (3.17)

follows from the bound on P′(Ta′ ≤ nT) given in (3.13).
So, we have

P(Ta ≤ nT) ≤ δT + enT(D(P||P′)+ε)P′(Ta′ ≤ nT)

and recall we want the probability above to stay away from 1. The
only term that can grow is in the exponent enT(D(P||P′)+ε). So the largest
we can make nT without this growing is by taking

nT = (1 − 2η)
log(T)

D(P||P′) + ε
.

This gives

P(Ta ≤ nT) ≤ δT + o(T−η) = o(1) .

which applied to the bound (3.12) gives

E[Ta] ≥ nT(1 − o(1)) = (1 − 2η)
log(T)

(D(P||P′) + ε)
(1 − o(1))

Thus

lim inf
T→∞

E[Ta]
log T

≥
1

D(P||P?)

188

3.3. LAI AND ROBBINS LOWER BOUND. NSW

which is the required bound on E[Ta]. (Some technical details: Here
after taking the limit we set η to zero, ε to zero and set P′ to P?. We
can do this because the bound holds for all η > 0 and ε > 0. Also a′ is
an arbitrary parameter such that r′ > r? so we apply our assumption
that D(Pa||Pa′)→ D(Pa||P?) as a′ → a?.)

Finally, for the regret bound we recall from Lemma 17 that

Rg(T) =
∑
a<A?

∆aE[Ta]

Thus applying the bound on each term E[Ta] gives the regret bound

lim inf
T→∞

Rg(T)
log T

≥

∑
a∈A

∆a

D(Pa||P?)
.

�

189

3.4. GITTINS’ INDEX THEOREM? NSW

3.4 Gittins’ Index Theorem?

The are many formulations of the multi-arm bandit problem (MAB).
The Gittins’ Index theorem considers a MDP formulation of MAB.
Hence there is less focus on learning aspects. (Though that of
course can be added in later.) Although perhaps the statistical ap-
proach is most relevant to us. the MDP formulation that we con-
sider here has a particularly elegant solution.

We consider the following problem:

• There are bandit arms a = 1, ...,N each in state xa
t at time t ∈ Z+.

For each a, the set Xa gives the (finite, disjoint) set of states of
each bandit and X is the union of these sets.

• If bandit a is chosen at state x at time t then the bandit is
played for for σa(x) units of time (an i.i.d. random variables
chosen each time bandit a is selected in state x). A reward ra(x)
is recieved at each time for the following σa(x) units time and
afterwards the bandit moves to state y with probability Pa(x, y).
All other arms remain unchanged.

• We let at be the index of the bandit that is currently active and
we let xt be its state.

• Started from x ∈
∏

aXa and with discount factor β ∈ (0, 1), the
objective is to choose at, t ∈ Z+ to maximize the expected dis-
counted reward process:

R(x) = Ex

 ∞∑
t=0

rat(xt)βt

 .
The above problem is a Markov Decision Processes which we will

see has a solution with special structure. Note the probabilities Pa

are assumed to be known. So this is not a statistical setup.

Remark 138 (A deterministic MAB). To get quickly get a flavour for
this MAB setting and its solution, suppose we know the current re-
ward of each arm and each arm is played for one unit of time, and
assume that we have no information about the future rewards of the
arms (not even their distribution). Since there is no information about
future rewards, you might as well play the arm with the highest in-
dexed reward. All other arms remain paused whilst it is played. So,

190

3.4. GITTINS’ INDEX THEOREM? NSW

to avoid comparing with arms at each step, you might as well keep
playing this arm until this index is less than the index when you orig-
inally started playing the arm. When the index goes below its initial
level, you can reassess the indices and continue as described.

The stochastic setting is similar to the above example, there is an
index with each arm and we only need to switch arms after the index
goes below its initial value. However, since we have information
about future rewards in the stochastic setting, we cannot use the
instanteous reward as an index (e.g. we might know that a loss
today leads to a big win tomorrow). So a different index is required...

Let’s quantify the reward need required to switch arms. If playing
arm a repeatedly completing this play after τ time units opposed to
recieving a fixed reward γ for that time period, i.e. we compare

ex(τ) = Ex

[τ−1∑
t=0

ra(xa
t)β

t
]

with fx(τ) = E
[τ−1∑

t=0

γβt
]

(3.18)

Basically, the first term is bigger, then it is worth trying out a for a
while. When we say “for a while", we mean play a until first time the
state xt hits, at time τ, some specified set of bad values. Let T be
the set of such stopping times. Now, given τ then we could chose
the value of γ where the two above terms are equal. In some sense,
this gives the value for playing a until stopping at time τ. The best
value is achieved by maximizing over T , giving the following index

G(x) = max
τ∈T

Ex

[∑τ−1
t=0 ra(xa

t)β
t
]

Ex

[∑τ−1
t=0 βt

] (3.19)

We call G(x) the Gittin’s Index of arm a in state x. Observe

• The Gittin’s index for bandit a does not depend on the states
of other bandits.

• In (3.19), the stopping time solving the maximization is given
by τ = min{t > 0 : G(xa

t) ≤ G(x)} as we now prove

Proof. The index γ = G(x) gives the biggest ratio between ex and
fx (see (3.18)). So, 0 ≥ ex(τ) − γ fx(τ) is negative and is achieves

191

3.4. GITTINS’ INDEX THEOREM? NSW

its maximium value of zero at a maximizer of (3.19). So

0 = max
τ∈T
Ex

[τ−1∑
t=0

ra(xa
t)β

t
−

τ−1∑
t=0

γβt
]

= Ex

[
(ra(xa

0) − γ) + β
∑
x1∈X

Pa(x, x1) ·max
τ∈T
Ex1

[τ−1∑
t=0

(ra(xa
t) − γ)βt

]]
The second inequality, emphasizes that the stopping time prob-
lem is a Markov Decision Process, with two decisions stop or
continue. Since a value of zero can always be achieved by stop-
ping, it is only worth continuing from a state x′ if there exists
a τ ∈ T which gives a positive future reward. I.e. (given the
calculatiom with γ above) we stop when G(x′) ≤ γ = G(x), as
required. �

• The Gittin’s indicies for an arm, a, can be calculated in with
the following algorithm

Calculating Gittin’s Indices

1. Let x∗ ∈ argmaxx∈Xa
ra(x) and take G(x∗) = ra(x∗).

2. We re-adjust the transition probabilities for
x, y , x∗ so that x∗ is skipped over:

P̃a(x, y) = Pa(x, y) + Pa(x, x∗)
Pa(x∗, y)

1 − Pa(x∗, x∗)
(3.20)

Let σ̃a(x) be the first time the bandit moves to a
state not equal to x∗ (started from x) and define

r̃a(x) =
Ex

[∑σ̃a(x)−1
t=0 ra(xa

t)β
t
]

Ex

[∑σ̃a(x)−1
t=0 βt

] , x ∈ Xa\{x∗}. (3.21)

3. Reset Xa to Xa\{x}, Pa to P̃a, σa(·) to σ̃a(·) and ra(·)
to r̃a(·) and repeat from step 1, until Xa = ∅.

The main result about this index is the following

192

3.4. GITTINS’ INDEX THEOREM? NSW

Theorem 21 (Gittin’s Index Theorem). For the Multiarmed bandit
problem (above), the optimal policy is to play at each time the Bandit
whose arm has the highest index.

Proof. We prove the results in the following three steps. Step 1, we
argue by an interchange arguement that if there is a bandit with the
best possible reward is available then, due to our time discount, its
is optimal to play this arm now rather than later. Step 2, we apply a
reduction that sequentially removes and orders these states under
an optimal strategy (this yields the Gittin’s Index and the above
algorithm). Step 3, we argue that the indicies found are increasing
in order, and so the optimal policy always chooses the arm with the
highest Gittin’s index.

Step 1: Suppose that π is an optimal policy, and that the system
starts in state (xa : i ∈ I) and bandit a∗ is in a state x∗ maximizing
ra(x) over a ∈ I and x ∈ X. We now argue that it is always optimal to
play arm a∗ first rather than later.

Let π∗ be the policy that plays a∗ first, then after exiting state x∗

plays π as the policy would have played from time 0. We let π∗ do
this until π first plays a∗, at time τ (τ = ∞ is in prinicple possible,
if π never plays a∗). At this point, the policy π∗ skips the play of a∗

and follows hereafter the behavour of π∗. This leads to comparing
the rewards under π and π∗, which only differ up to time τ + σi∗(x∗),
and are repectively:

Eπx

 τ−1∑
t=0

rπt(xt)βt + βτ
σi∗ (x∗)−1∑

t=0

ri∗(x∗)βt


and

Eπx

σi∗ (x∗)−1∑
t=0

ri∗(x∗)βt + βσi∗ (x∗)
τ−1∑
t=0

rπt(x
πt
t)βt

 .
the latter term is bigger than the form, because after a bit of algebra,
this is equivalent to the inequality

ri∗(x∗) ≥
Eπx

[∑τ−1
t=0 rπt(x

πt
t)βt

]
Eπx

[∑τ−1
t=0 βt

] ,

which holds by assumption of a∗, x∗. This shows that there is an
optimal policy that chooses a∗ whenever it is in state x∗.

193

3.4. GITTINS’ INDEX THEOREM? NSW

Step 2: We can reduce the problem and remove x∗ from the state-
space of bandit a∗, by performing one iterations of the algorithm
above . Notice the reward from one bandit play on r̃, (3.21), in the
reduced problem is equivalent to the reward from r for under a policy
with x∗ is given priority

Ẽx

[σ̃a(x)−1∑
t=0

r̃a(x)βt
]

= Ex

[σ̃a(x)−1∑
t=0

rπt(xt)βt
]
.

So when we play with bandit rewards r̃ at x, we are effectively play-
ing with rewards r as it visits x and any subsequent visits to x∗.
Since x∗ has priority under an optimal policy, an optimal policy on
the reduced problem recovers the optimal policy under the origi-
nal (unreduced) problem, and the average rewards are the same.
Thus by induction, we can reduce the problem to until a states re-
main. This single state system is clearly optimal, thus the priority
that can be derived (backward) though the stages of this induction
must be optimal. It remains to show that this policy corresponds
to the Gittins’ index policy.

Step 3: Notice that the reduced reward r̃ involves taking an av-
erage of rewards ra(x), x ∈ Xa, which are less than ra(x∗) by the def-
inition of x∗. Thus, ra(x) ≥ r̃a(x) at each stage of the reduction. We
can argue that under the reduction argument, the reward of the
state removed is the Gittins index of that state. It is clear that the
state with maximum reward is the state with highest Gittins index.
So the first step of this repeated reduction, defines a stopping rule
for each state that says keep playing until you reach a state with
index lower that x∗ and thus the highest reduced reward, if payed
until the stopping rule is executed, then has rewards are equal to
the original bandit if played until an index lower than this reduced
reward. In otherwords, the highest reduced reward is the Gittin’s
index for that bandit. �

194

3.5. NON-STOCHASTIC MULTI-ARMED BANDITS? NSW

3.5 Non-Stochastic Multi-armed Bandits?

We now consider a slightly less classical formulation of the Multi-
arm bandit problem. Up until now we assumed rewards or costs
were generated at random. However, it is possible to consider the
setting where there is some arbitrary mechanism generating costs.
In this case it is possible to design algorithms that do roughly as
well as choosing the best arm.

The Setup. We consider the following setting. There are a finite set
of arms A. There is an environment that chooses outcomes ω from
some set Ω. We do not specify the specific mechanism that choses
outcomes. 4 At each time, after choosing an arm a, an outcome ω
occurs and you receives a cost c(a;ω) ∈ [0, 1].5 We assume that the
set of arms in of size N.

A policy πt choses arm is a function of the previous actions cho-
sen as, s = 1, ..., t − 1 and their costs c(as;ωs) I.e. you cannot observe
what cost would have happened if you had chosen a different action.

Interaction: policy and environment. A policy and environment
do the following at each time t:

1. The environment chooses ωt ∈ Ω (unknown to the policy)

2. Policy choses an action πt ∈ A

3. The cost c(πt, ωt) is revealed to the policy.

Regret. The regret of a policy is defined to be

Rg(T) = E

 T∑
t=1

c(πt, ωt)

 −min
a∈A

T∑
t=1

c(a, ωt)

I.e. The regret is the additional cost incurred by following policy π
rather than the best arm in A. The expectation above is taken over
any randomization employed by out policy to choose arms. As pre-
viously, a good algorithm should (at least) have regret that exhibits
sub-linear growth in its regret.

4The environment is arbitrary other than to say that it is unaware of any ran-
domization that we may employ in the design of our algorithm.

5We do our analysis for costs rather than rewards as the maths is more clean
this way.

195

3.5. NON-STOCHASTIC MULTI-ARMED BANDITS? NSW

Exponential Explore Exploit. We now describe an algorithm has
sub-linear regret for bandit problems. It is known as Exponential
Explore Exploit or Exp3, for short. It is the bandit analogue of an
algorithm called the exponential weighted forecaster. This, in turn,
can be thought of as an online convex optimization algorithm, which
we discuss in Section ??.

Exp3 depends on a parameter η and maintains weights wt(a) and
from these constructs probabilities

Pt(a) =
wt(a)∑

a′∈Awt(a′)
.

We select arm πt with these probabilities. After we play arm πt and
receive cost c(πt, ωt), we can construct an unbiased estimator of the
cost for each arm

ĉt(a;ωt) =
c(a;ωt)
Pt(a)

I[πt = a].

(Observe that Eπt[ĉt(a, ωt)] = c(a, ωt).) With this estimates we can
update the weights as follows

wt+1(a) = e−ηĉt(a)wt(a) .

The algorithm is given in the text box below.

Exponential Explore-Exploit, Exp3

For parameter η > 0 and costs 0 ≤ c(a;ω) ≤ 1, Exp3 is a randomized
policy choses action πt at time t according to weights w1(a) = 1

wt(a) = e−ηĉt−1(a)wt−1(a) and Wt =
∑
a∈A

wt(a)

and πt = a with probability

Pt(a) =
wt(a)
Wt

.

Here
ĉt(a;ωt) =

c(a;ωt)
Pt(a)

I[πt = a].

196

3.5. NON-STOCHASTIC MULTI-ARMED BANDITS? NSW

Regret bound. We prove the following

Theorem 22. For the Exp3 algorithm with parameter η the following
bound holds

Rg(T) ≤
1
η

log N +
η

2
TN

and for appropriate η

Rg(T) ≤ 2
√

2TN log N .

Proof. We collect together a few facts, specifically (3.22)–(3.26), then
the proof proceeds by analyzing and bounding the change in the
sum of the weights.6

First note that by a Taylor expansion that it holds that for c ≥ 0

e−c
≤ 1 − l +

c2

2
. (3.22)

and

log(1 + x) ≤ x. (3.23)

As discussed above note that

Eπt[ĉt(a;ωt)] = c(a;ωt) (3.24)

Also it holds that

Pt(a)E[ĉt(a, ωt)2] ≤ 1 (3.25)

because

Pt(a)Eπt[ĉt(a, ωt)2] = Pt(a) · Pt(a)
c(a;ω)2

Pt(a)2 = c(a;ω)2
≤ 1 .

Finally, note that ∑
a∈A

Pt(a)ĉt(a;ω) = c(πt;ω) (3.26)

because ∑
a

Pt(a)ĉt(a;ωt) =
∑

a

Pt(a)
c(a;ωt)
Pt(a)

I[πt = a] = c(πt;ωt) . 7

6This proof is similar to the proof of the weighted majority algorithm.
7A subtle point to note here is that we are not taking an expectation with

respect to πt but we are just taking a sum weighted by Pt(a).

197

3.5. NON-STOCHASTIC MULTI-ARMED BANDITS? NSW

We now have note the elementary bounds that we need for the
main proof. We analyse Wt =

∑
a wt(a), as follows,

Wt+1

Wt
=

∑
a∈A

wt+1(a)
Wt

=
∑
a∈A

wt(a)
Wt

e−ηĉt(a;ωt)

≤

∑
a∈A

Pt(a)
(
1 − ηĉt(a;ωt) +

η2

2
ĉt(a;ωt)2

)
=1 − ηc(πt, ωt) +

η2

2

∑
a∈A

Pt(a)ĉt(a;ωt)2. (3.27)

The inequality applies the Taylor expansion (3.22) which we can
apply since the costs are bounded above by 1 from (3.24). The final
equality applies (3.26).

Now taking logs in (3.27), applying inequality (3.23), and sum-
ming for t = 1, ...,T gives

log WT+1 =

T∑
t=1

log
Wt+1

Wt
≤ −η

T∑
t=1

c(πt, ωt) +
η2

2

T∑
t=1

∑
a∈A

Pt(a)ĉt(a;ωt)2.

We can also lower bound log WT+1 as follows

log WT+1 = log
∑

a

wt(a) ≥ log wt(a) = η
T∑

t=1

ĉt(a;ωt)

Combining the upper bound and the lower bound on log WT+1

gives

T∑
t=1

ĉt(πt;ωt) −
T∑

t=1

ĉt(a;ωt) ≤
1
η

log N + η
T∑

t=1

∑
a∈A

Pt(a)ĉt(a;ωt)2

Taking expectation on both sides above and applying the equality
(3.24) and the inequality (3.25) gives

Rg(T) =

T∑
t=1

Eπt[ct(πt;ωt)] −
T∑

t=1

ct(a;ωt)

≤
1
η

log N +
η

2

T∑
t=1

∑
a∈A

Pt(a)Eπt[ĉt(a;ωt)2]

≤
1
η

log N + ηTN ,

198

3.5. NON-STOCHASTIC MULTI-ARMED BANDITS? NSW

as required. Notice that if we minimize the above bound over η by
taking η =

√
2 log N/TN. This give the second bound required in the

theorem. �

199

3.6. STOCHASTIC REGRESSION NSW

3.6 Stochastic Regression
We consider the following formulation of Lai, Robbins andWei (1979),
and Lai and Wei (1982). Consider the following regression problem,

yt = β>xt + εt

for t = 1, 2, ... where εt are unobservable random errors and β =
(β1, ..., βp) ∈ Rp are unknown parameters.

Typically for a regression problem, it is assumed that inputs
x1, ...,xt are given and errors are IID random variables. However,
we now want to consider a setting where we sequentially chose in-
puts xt ∈ Rp and then get observations yt ∈ R and errors εi are a
martingale difference sequence with respect to the filtration gener-
ated by {xi, yi−1 : i ≤ t}.

We let Xt = (xi j : i = 1, ..., t, j = 1, ..., p) be the matrix of inputs and
yt = (yi : 1 ≤ i ≤ t) be the matrix of outputs. Further we let bt be
the least squares estimate of β given Xt and yt. The following result
gives a condition on the eigenvalues of the design matrix X>t Xt for bt

to converge to β and also gives a rate of convergence.

Thrm 139. If λmin(t) and λmax(t) are, respectively, the minimum and
maximum eigenvalues of the design matrix X>t Xt and if we assume
that almost surely, suptE[ε4

t |Ft−1] < ∞,8 then whenever we have

λmin(t) −−−→
n→∞

∞ and
log(λmax(t))
λmin(t)

−−−→
t→∞

0

then bt converges to β and

||bt − β||
2 = O

(
log(λmax(t))
λmin(t)

)
.

In what follows, || · || is the Euclidean norm for a vector and for
a matrix ||A|| = supv:||v||=1 ||Av||. (Note that it is well known that ||A|| =
λmax(A) the maximum eigenvalue of A.)

Proof. The least squares estimate to the above regression problem
is given by

bt := (X>t Xt)−1X>t yt and β := (X>t Xt)−1X>t (yt − εt) .

8This assumption can be weakened but the proof is a little cleaner with a 4th
moment.

200

3.6. STOCHASTIC REGRESSION NSW

So bt − β = (X>t Xt)−1X>t εt where εt = (εi : i = 1, ..., t). To prove the
above theorem first note that

||bt − β||
2 =

∣∣∣∣∣∣∣∣(X>t Xt)−1
t∑

i=1

xiεi

∣∣∣∣∣∣∣∣2
≤ ||(X>t Xt)−1/2

||
2
∣∣∣∣∣∣∣∣(X>t Xt)−1/2

t∑
i=1

xiεi

∣∣∣∣∣∣∣∣2
= λmin(t)−1

× ε>t Xt(X>t Xt)X>t εt︸ ︷︷ ︸
=:Qt

(3.28)

In the inequality above we apply the Cauchey-Schwartz inequality.
We bound Qt using the Sherman-Morrison formula. Specifically in
Proposition 140, below, it is shown that

QT −Q0 + aT = o(aT) +

T∑
k=0

ε2
tx
>

t Vtxt

where aT is some positive increasing sequence. So eventually it
holds that

QT ≤ Q0 +

T∑
k=0

ε2
tx
>

t Vtxt . (3.29)

So the convergence is determine by the rate of convergence of the
sequence

∑T
k=0 x

>

t Vtxt. Specifically in Lemma 20 we show that
T∑

k=0

ε2
tx
>

t Vtxt ≤ σ
2

T∑
k=0

x>t Vtxt + o
(T∑

k=0

x>t Vtxt

)
+ O(1) . (3.30)

In Lemma 19, we also show that
T∑

k=p

x>t Vtxt ≤ p logλmax(T) − c (3.31)

for some constant c. Combining (3.29), (3.30), and (3.31) gives

QT ≤ Q0 + σ2p logλmax(T) + o
(

logλmax(T)
)

+ O(1) .

I.e. Qt ≤ O(logλmax(t)). Applying this to (3.28), we arrive at a bound
of the required form

||bt − β||
2
≤ O

(
log(λmax(t))
λmin(t)

)
.

�

201

3.6. STOCHASTIC REGRESSION NSW

In what follows we must study the asymptotic behavior of Qt.
What we will show is

Prop 140. Almost surely

QT −Qp = o(aT) − aT + O(1) +

T∑
t=p+1

ε2
tx
>

t Vtxt

where aT is a positive, increasing sequence.

Proof. To prove this proposition we will require some lemmas, such
as the Sherman-Morris formula. These are stated and proven after
the proof of this result.

The Sherman-Morrison Formula states that:

(A + uv>)−1 = A−1
−

A−1uv>A−1

1 + v>A−1u
.

Note that

Vt := (X>t Xt)−1 = (X>t−1Xt−1 + xtx
>

t)−1 = Vt−1 −
Vt−1xtx

>

t Vt−1

1 + x>t Vt−1xt
.

Thus

Qt =ε>t XtVtX>t εt

=ε>t−1XtVtX>t εt−1 + 2εtx>t VtX>t εt−1 + ε2
t x>t Vtxt

=ε>t−1Xt

(
Vt−1 −

Vt−1xtx
>

t Vt−1

1 + x>t Vt−1xt

)
X>t εt−1

+ 2εtx>t
(
Vt−1 −

Vt−1xtx
>

t Vt−1

1 + x>t Vt−1xt

)
X>t εt−1

+ ε2
t x>t Vtxt

=Qt−1 −
(x>t Vt−1X>t εt−1)2

1 + x>t Vt−1xt

+ 2ε>t xtVt−1X>t εt−1

(1
1 + x>t Vt−1xt

)
+ ε2

t x>t Vtxt

202

3.6. STOCHASTIC REGRESSION NSW

Thus summing and rearranging a little

QT −Qp +

T∑
t=p+1

(x>t Vt−1X>t εt−1)2

1 + x>t Vt−1xt︸ ︷︷ ︸
=:aT

= 2
T∑

t=p+1

xtVt−1X>t εt−1

(1
1 + x>t Vt−1xt

)
εt +

T∑
t=p+1

ε2
t x>t Vtxt

Notice in the above, the first summation (before the equals sign) only
acts to decrease QT, while on the right hand side, the first term is a
martingale difference sequence and the second term is a quadratic
form.

We recall from the results on Martingales stated in Section A.1,
that for any L2-martingale it holds, almost surely, that

Mt = o(〈M〉t) + O(1)

where 〈M〉t−〈M〉t−1 = E[(Mt−Mt−1)2
|Ft]. Applying this to our case, the

Martingale difference sequence is a L2 martingale and so we have
that

2
T∑

t=p+1

xtVt−1X>t εt−1

(1
1 + x>t Vt−1xt

)
εt = o

 T∑
t=p+1

(xtVt−1X>t εt−1)2

(1 + x>t Vt−1xt)2

 + O(1)

= o(aT) + O(1)

In the second equality above, we use that (1 + x>t Vt−1xt)−1
≤ 1. Thus

we have that

QT −Qp + aT = o(aT) + O(1) +

T∑
t=p+1

ε2
tx
>

t Vtxt .

�

Lemma 18 (Sherman-Morrison Formula). For an invertible Matrix
A and two vectors u and v

(A + uv>)−1 = A−1
−

A−1uv>A−1

1 + v>A−1u
(Sherman-Morrison)

203

3.6. STOCHASTIC REGRESSION NSW

Proof. Recalling that the outer-product of two vectors wv> is the ma-
trix (wiv j)t,t

i=1, j=1 it holds that

(wv>)(wv>) = (w>v)(wv>)

(Nb. This is matrix multiplication: each column is a constant times
u and every row is a constant time v, so the dot product comes out.)

Using this identity note that(
I −

wv>

I + v>w

)(
1 + wv>

)
= I + wv> −

wv>

1 + v>w
+

1
1 + v>w

(wv>)(wv>)

= I + wv> −
wv>

1 + v>w
[
1 + w>v

]
= I .

So (I + wv>)−1 = I − wv>
1+v>w . Now letting u = Aw,

(A + uv>)−1 = (I + wv>)−1A−1 =
(
I −

wv>

1 + v>w

)
A−1 = A−1 +

A−1uv>A−1

1 + v>A−1u
.

as required. �

The following in some sense repeatedly analyses to the determi-
nant under the Sherman-Morrison formula.

Lemma 19. If w1,w2, ... are a sequence of vectors and we let At =∑t
k=1w

>

k wk then

w>k Awk ≤ 1

and
T∑

k=p+1

w>k A−1
k wk ≤ p logλmax(T) − log |Ap| .

Proof. First note that if A = B+w>w then, as was also in the Sherman-
Morris formula

|B| = |A −w>w| = |A|(1 −w>A−1w)

Thus
w>Aw =

|A| − |B|
|A|

which should remind you of the derivative of the logarithm. Also
this implies w>Aw ≤ 1 as requires. (Also note that this tells us that

204

3.6. STOCHASTIC REGRESSION NSW

determinant is increasing and that w>Aw ≤ 1.) If we apply this to
the above sum and apply the concavity of the logarithm

T∑
k=p+1

w>k A−1
k wk =

T∑
k=p+1

|Ak| − |Ak−1|

|Ak|
≤

T∑
k=p+1

log |Ak| − log |Ak−1|

= log |AT| − log |Ap|

Since |A| is the product of all eigenvalues λmax(T)p
≥ |AT| . So we see

that
T∑

k=p+1

w>k A−1
k wk ≤ p logλmax(T) − log |Ap| ,

which then gives the result. �

Lemma 20.
T∑

k=0

ε2
tx
>

t Vtxt =

T∑
k=0

x>t Vtxt + o
(T∑

k=0

x>t Vtxt

)
+ O(1)

Proof. We let σ2 = maxtE[ε2
|Ft] (which we know is finite since, by

assumption, the 4th moment is finite).

T∑
k=0

ε2
tx
>

t Vtxt =

T∑
k=0

(ε2
t − E[ε2

t |Ft])x>t Vtxt +

T∑
k=0

E[ε2
t |Ft]x>t Vtxt

≤

T∑
k=0

δtx
>

t Vtxt + σ2
T∑

k=0

x>t Vtxt . (3.32)

Here we define δt = ε2
t−E[ε2

t |Ft−1]. Notice since we assume suptE[ε4
t |Ft−1] <

∞ then δt is L2 bounded.
We recall Section A.1, that for any L2-martingale it holds, almost

surely, that Mt = o(〈M〉t)+O(1) where 〈M〉t−〈M〉t−1 = E[(Mt−Mt−1)2
|Ft],

and we recall that xtVtxt ≤ 1, which is proven below in Lemma 19.
From this it follows

T∑
k=0

δtx
>

t Vtxt = o
(T∑

k=0

(x>t Vtxt)2
)

+ O(1)

= o
(T∑

k=0

(x>t Vtxt)
)

+ O(1) .

205

3.6. STOCHASTIC REGRESSION NSW

Applying this to (3.32) gives the required bound

T∑
k=0

ε2
tx
>

t Vtxt =

T∑
k=0

x>t Vtxt + o
(T∑

k=0

x>t Vtxt

)
+ O(1).

�

206

Chapter 4

Tabular Reinforcement
Learning

207

4.1. PRINCIPLES OF REINFORCEMENT LEARNING NSW

4.1 Principles of Reinforcement Learning

• Overview of Reinforcement learning and terminology.

• Policy evaluation & policy improvement; exploration-exploitation
trade-off; model free control; function approximation.

First we discuss at a high level a few of the key concepts in Re-
inforcement learning. These will then be discussed in more precise
mathematical detail for specific examples and algorithms in subse-
quent sections.

Reinforcement Learning: Reinforcement Learning is the setting
where we do not know the transition probabilities of a Markov De-
cision Process (or we might want to approximate a control problem
with MDP). For instance, you might be able to simulate a problem
with states, actions and rewards but you do not have access to the
underlying dynamics of the simulation. Enough information must
be gathered to approximate the optimal action for each state.

Policy Evaluation and Policy Improvement: When we look at re-
inforcement learning algorithms the same principles that applied
to MDPs (with known transition probabilities) apply. I.e. we might
want to think of the steps of the algorithm either improving the
policy:

π(x) ∈ argmax
a∈A

{
r(x, a) + βEx,a [R(x̂, π0)]

}
or evaluating the reward function of the current policy

R(x, π) = Eπx

 ∞∑
t=0

βr(Xt, π(Xt))

 .
Although algorithms might be subject to more noisy estimates.

Exploration-Exploitation trade-off: Because transition probabili-
ties are unknown, when you are at a state, say x, there is a question
of whether you should perform the best action a∗ given the available
information and thus attempt to implement the best known policy;
or if you should chose a different (possibly random) action and thus

208

4.1. PRINCIPLES OF REINFORCEMENT LEARNING NSW

get better information about the value of that action. I.e. there is
a trade-off between doing what is myopically best given the avail-
able information (exploitation) and trying something new incase it
might be better (exploration). (This is similar to policy evaluation
and improvement, but here we are interested in finding the statisti-
cal properties of each action rather than performing computations
on a function.) Problems that investigate exploration and exploita-
tion tradeoff in isolation are often called Multi-armed Bandit prob-
lems, and there is a vast recent literature on these topics as well as
a very well developed theoretical basis preceding this.

Model Free Control: Here we are especially interested in methods
that are model free. A method is model free when it does not require
an explicit estimation of the system dynamics, specifically, we don’t
try to estimate the transition probabilities Pa

xy for each action. For
instance, if we perform policy improvement based on an estimation
of the value function to V,

π(x) ∈ argmax
a∈A

r(x, a) +
∑

x̂

Pa
xx̂V(x̂)

then this is not model free, because we need to estimate Pa
xx̂ in addi-

tion to our estimate of the value function V. Instead we might con-
sider the Q-function of the MDP. This is the function Q(x, a) which
gives the value function for taking action a in state x and then af-
terward follow the optimal policy. If we perform policy improvement
based on an estimation of the Q-function

π(x) ∈ argmax
a∈A

Q(x, a)

then this is model free. We will discuss this in more detail in the
next section.

Function Approximation: If the set of state and actions is mod-
erately small then we can store functions of interest such as the
Q-function Q(x, a) as a table (or matrix) in computer memory. These
algorithms are often called table based methods. But for larger
problems or of problems with continuous state spaces and action
spaces, then it is not possible to store this information. Further
the likelihood of revisiting exactly the same state twice is vastly re-
duced. So often we have to infer relationships between states that
are "close" and hope that the value function is suitably continuous

209

4.1. PRINCIPLES OF REINFORCEMENT LEARNING NSW

that this forms a good approximation. So here we might for in-
stance replace the value function Q(x, a) with some approximation
Qw(x, a) which is of lower dimension than Q(x, a). Here w represents
a weights that we use to parameterize our approximation (e.g. we
could approximate continuous real valued function with a polyno-
mial). Then we might look to find the best approximation:

min
w
E[(Q̂(x, a) −Qw(x, a))2] .

Here we let Q̂(x, a) be the Q-values of the current policy as observed
from the data seen so far and we look to find the weights that give
the best approximation. Above we minimize the mean-squared-
error of the loss function, but we could consider other metrics and
we could approximate other functions e.g. policies πw(x) ≈ πw(x).

Further Terminology.

Def 141 (Episode). When we run a sample path of an MDP under a
policy π we call this an episode.

Here we implicitly assume that each episode terminates, or re-
freshes after some finite time.

In reinforcement learning we are often fitting functions R(x, π),
Q(x, a) and π(x) using simulation data. Here performing updates of
the form

R(x)← R(x) + αd(x̂)

We need to specify when and how often we perform these updates.
These give different variants of each algorithm that we consider.

Def 142 (Offline and Online update). If we perform the update (4.1)
at the end of each episode simultaneously for each x then we say that
the update is offline. If we update (4.1) for each x in the order visited
by the episode, the we say this is online.

Note that we can perform online updates while we simulate an
episode, while offline we must wait for the episode to end. Note
that the offline algorithm updates are synchronous – we update all
components of R(x) simultaneously – while online algorithms asyn-
chronously update.

Def 143 (First Visit and Every Visit update). If we perform the up-
date (4.1) only once for the first visit to x then we say this is the first
visit. If we perform an update (4.1) for each visit to x we say this is
the every visit update.

210

4.1. PRINCIPLES OF REINFORCEMENT LEARNING NSW

In an offline every-visit algorithm, we assume an update of the form

R(x)←− R(x) +

N∑
v=1

αd(x̂(v))

i.e. we only update R once at the end of the episode, but the update
applies a term for every visit v = 1, ...,N to x. While in an online
every-visit algorithm, we update

R(x)← R(x) + αd(x)

When we talk above different policy evaluation algorithms we can
talk about offline & online and first-visit & every-visit variants.
From a theoretical perspective offline first-visit algocrithms are eas-
ier to deal with. While from an implementation perspective, every-
visit online algorithms are more straight-forward to program (as we
don’t need to remember anything).

References.
The book of Sutton and Barto is the gold standard on reinforcement
learning [48] . Though to go a little deeper, I have benefited a lot from
reading the more mathematically rigorous text of Bertsekas and
Tsitsiklis [7]. Bertsekas has a new book on reinforcement learning
which I will likely reference once I have a copy!

211

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

4.2 Policy Evaluation: MC and TD meth-
ods

• Monte-Carlo and Temporal differences.

• TD(0), n-step TD, TD(λ).

• Importance Sampling, Stopping Time and Tree back up.

We now begin to consider algorithms for Markov decision prob-
lems where the rewards are not known and, now, these need to be
estimated either through simulation or data. Recall from Section
0.5 that a MDP algorithm consists of two parts: policy evaluation
and policy improvement. Here we begin to see policy evaluation as
a statistical procedure rather than just linear algebra.

Our task in this section is to estimate the reward function

R(x, π) := Ex0

 ∞∑
t=0

βtr(Xt, πt)

 .
for a stationary policy π by generating episodes under the policy π.

Some Terminology
Since our policy π will not change in this section we will often sup-
press the dependence on π our notation. To estimate R(·), we will
be applying updates of the form

R(x)←− R(x) + αd(x̂) (4.1)

for each state x, where x̂ = (x̂0, x̂1, ...) is the set of states visited from
x̂0 = x onwards and where d is a function of some of these states
and the current reward function.

212

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

Monte-Carlo Policy Evaluation
Monte-Carlo policy evaluation is the simplest method of evaluating
a policy. Here you simply run a number of episodes under a policy
and calculate the mean future reward for each state. As is shown
in Lemma 21 below, it is not hard to see that we calculate the mean
of N data points empirically through the recursion:

R̄← R +
1
N

(R̃ − R̄) .

Def 144 (Monte-Carlo Policy Evaluation). When x is visited in an
episode update

N(x)← N(x) + 1

R̄(x)← R̄(x) +
1

N(x)

(
R̃(x) − R̄(x)

)
where

R̃(x) = r(x̂0) + βr(x̂1) +βTr(x̂T)

is the observed reward after visiting state x to the end of the episode.
Also N(x) is the number of visits to x and R̄(x) is the mean.

This update can be done on every visit to state x or the first time x is
visited in an episode. Monte-Carlo Policy Evaluation convergences
to the reward function

Proposition 5.
R̄(x) −−−−−→

N(x)→∞
R(x) = E[R̃(x)] .

The proof follows immediately from the strong law of large numbers.
Advantages and disadvantages. Monte-Carlo policy evaluation
has the advantage that it is simple and intuitive. Further it is an
unbiased estimate of the true reward. However, it requires a full
episode to perform an update. The variance of a full episode’s re-
ward can be quite big.

1

1It the environment is continuing you can choose a state to be a “starting
state", and assuming that state is recurrent then you can reset the episode every
time that state is visited.

213

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

Remark 145 (Forgetting the past). We can also perform an update
where we don’t divide by the number of visits:

R̄(x)← R̄(x) + α(R̃(x) − R̄(x)) .

Note that after N updates we get that:

R̄(x) = αR̃N + α(1 − α)R̃N−1 + α(1 − α)2R̃N−2 + ... + α(1 − α)N−1R̃1.

This puts a focus on the most recent rewards. (This can be useful if
the policy has been changing a small amount over each step, and we
care about the more recent information.)

Lemma 21. For data a1, a2, ..., we let āN be the mean of the first N
pieces of data, i.e.

āN =
1
N

N∑
n=1

an

Notice ān obeys the recursion:

āN+1 =
1
N

(aN+1 − āN)

Proof. After N iterations, the algorithm update gives

N × āN = N ×
(
āN−1 +

1
N

(aN − āN−1)
)

= aN + (N − 1)āN−1

= ... =
N∑

n=1

ãn.

Above we can repeat the same substitution on (N − 1)aN−1 as we did
for NaN. �

214

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

Temporal Difference Learning
Like Monte-Carlo the temporal difference method is a way of es-
timating the value function of a dynamic program. While Monte-
Carlo required us to evaluate a whole episode of a simulation. Tem-
poral difference methods cut this short, so that, in principle, we
can update our reward estimate at simulation step.

Recall, that for any Markov chain the reward function satisfies

R(x) = Ex[r(x, x̂) + βR(x̂)] (4.2)

or, equivalently,

R(x) = R(x) + E
[
r(x, x̂) + βR(x̂) − R(x)

]
which is a fixed point of the operation

R(x) α
←− E

[
r(x, x̂) + βR(x̂) − R(x)

]
which, in turn, can be approximated by

R(x) α
←− r(x, x̂) + βR(x̂) − R(x).

The update term, above, is called a Temporal Difference, and the
algorithm given described is called TD(0). The above recursion is an
asynchronous Robbins-Munro step rule and so by Theorem 16 the
algorithm converges to the correct reward function. We summarize
each of these points below.

Def 146 (Temporal Differences). The above term

d(x, x′) = r(x, x′) + βR(x′) − R(x)

is called a temporal difference.

Def 147 (TD(0)). The algorithm where on every visit to x we perform
the update:

R(x) α
←− r(x, x̂) + βR(x̂) − R(x)

is called TD(0). Here TD stands for Temporal Difference.

Theorem 23. If αt(x) the learning rate applied in TD(0) at state x after
t iterations is such that

∞∑
t=0

αt(x) = ∞,
∞∑

t=0

α2
t (x) < ∞,

215

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

and if each state x ∈ X is visited infinitely often then the TD(0) reward
estimate after t iterations, Rt(x), is such that

Rt(x) −−−→
t→∞

R(x) := Ex

 ∞∑
s=0

βsr(xs, xs+1)


where the reward function, satisfying (4.2).

Proof. Notice that Rt(x) follows the update

Rt+1(xt) = αt(xt)
[
r(xt, xt+1) + βR(xt+1)

]
and Rt+1(x′) = Rt(x′) for all x′ , xt. This is an asynchronous Robbins-
Munro scheme, and by Theorem 16 convergence almost surely to
R(x) satifying the condition

R(x) = Ex[r(x, x̂) + βR(x̂)]

which by our result of rewards for Markov chains, Proposition 15
(see the proposition subsequent remark too), is equal toEx[

∑
∞

s=0 β
sr(xs, xs+1)].
�

Remark 148. Very similar convergence proof exists for the other TD
methods mentioned in this section: n-step TD and TD(λ). For instance
the proof of n-step TD is almost identical. The proof for TD(λ) follows
in a similarly straightforward manner, we also refer the reader to [49,
Section 5.3] for a proof.

n-Step TD

In (every-visit) Monte-Carlo Policy Evaluation, to estimate the re-
ward we added the whole sequence of future rewards whereas in
TD(0) we only add one reward at a time. Therefore we can presume
that TD(0) has considerably lower variance, but perhaps at the cost
bias in our estimate. We can extend the TD update to include more
than one reward.

We can expand out the Bellman equation over n-steps:

216

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

R(x̂0) = R(x̂0) + E
[
r(x̂0, x̂1) + βR(x̂1) − R(x̂0)

]
...

= R(x̂0) + E

 n−1∑
t=0

βtr(x̂t, x̂t+1) + βnR(x̂n) − R(x̂0)


= R(x̂0) + E

 n−1∑
t=0

βtd(x̂t, x̂t+1)


In TD(0) we update by adding the first temporal difference after

visiting x discounting each by a factor β. Suppose now we update
by adding the next n temporal differences after visiting x.

Def 149 (n-Step TD). The update

R(x) α
←−

n−1∑
t=0

βtd(x̂t, x̂t+1) =

n−1∑
t=0

βtr(x̂t, x̂t+1) + βnR(x̂n) − R(x̂0)

is called n-step TD.

Notice that∞-step TD is exactly Monte-carlo policy evaluation. And
notice 1-step TD is TD(0).
A Bias-Variance Decomposition. We can look at the n-step TD
update as moving a prediction R(x) towards a target observation

TD target =

n∑
t=1

βtr(x̂t) + βn+1R(x̂n+1)

Thus, if Rπ(x) is the true reward of the policy being evaluated then
the temporal difference error is

TDn :=
n∑

t=1

βtr(x̂t) + βn+1R(x̂n+1) − Rπ(x̂0)

Like with regression, we can analyze the bias and variance of these
predictions.

Lemma 22 (Bias-Variance Decomposition for n-step TD).

E[TD2
n] = β2nEx[Rπ(x̂n) − R(x̂n)]2︸ ︷︷ ︸

Bias

+ β2nV(R(x̂n)) +V
(∑n−1

t=0 β
tr(x̂t)

)
︸ ︷︷ ︸

Variance

217

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

Notice this splits the n-step TD error into two terms one bias term
and two variance terms: one for the time n predicted future reward,
R(x̂n); and one for the cumulated reward over n steps

∑n−1
t=0 β

tr(x̂t).

Proof.

Ex[TD2
n] = Ex

[(
Rπ(x̂0) − βnR(x̂n) −

∑n−1
t=0 β

tr(x̂t)
)2]

= Ex

[
Rπ(x̂0) − βnR(x̂n) −

∑n−1
t=0 β

tr(x̂t)
]2

+ Ex

[(
βnR(x̂n) +

∑n−1
t=0 β

tr(x̂t) − Ex

[
βnR(x̂n) −

∑n−1
t=0 β

tr(x̂t)
])2

]
= β2nEx[Rπ(x̂0) − R(x̂n)]2

+ E[
(
βnR(x̂n) − E[βnR(x̂n)]

)2]

+ E[
(∑n−1

t=0 β
tr(x̂t) − E

[∑n−1
t=0 β

tr(x̂t)]
)2]

= β2nEx[Rπ(x̂n) − R(x̂n)]2 + β2nV(R(x̂n)) +V
(∑n−1

t=0 β
tr(x̂t)

)
.

In the 2nd equality, we add and subtract Ex[βnR(x̂n)−
∑n−1

t=0 β
tr(x̂t)] and

then expand. In the 3rd equality, we note for the 1st expectation
that Rπ(x) − Ex[

∑n−1
t=0 β

tr(xt)] = βnE[Rπ(x̂n)] and we expand the 2nd ex-
pectation into two terms. �

Remark 150. Notice that if rewards are roughly IID with variance σ2

thenV
(∑n−1

t=0 β
tr(x̂t)

)
= σ2(1 − β2n)/(1 − β). Thus the decomposition takes

the form:

E[TD2
n] = β2n

[
Ex[Rπ(x̂n) − R(x̂n)]2 +V(R(x̂n)) −

σ2

1 − β

]
+

σ2

1 − β

This gives some intuition on the number of steps n. Basically, de-
pending on whether the term in square brackets is positive or nega-
tive we should choose n large or small. Specifically if there is high
error or high variance in the future expected reward then n should be
increased in size. However, if there is small 1error and small vari-
ance in future expected reward relative to the variance in individual
rewards, then n should be small. This could for instance imply that
the number of steps in the TD algorithm should be reduced for later
stages of training.

218

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

TD-Lambda.?

Similar to n-step TD, we want to consider continuous update where
we can trade off bias and variance. Again like n-step TD, TD-Lambda
will represent a set of methods with Monte-Carlo policy evaluation
on the one extreme and TD(0) on the other. TD-Lambda continu-
ously parameterizes this range (rather than the discrete way that
n-step TD.

We break this into two pieces first describing an off-line TD(λ)
update and then adapt it to give a more practical online update.

Remark 151. At a practical level, n-step TD methods are much more
simpler to understand and code up. They achieve much the same
goal as TD-lambdamethods. TD-Lambda is elegant in their use of the
memoryless property of the geometric distributions. However, (in my
opinion) TD-lambda methods are arguably a marginal improvement
on n-step TD methods.

TD(λ) – Offline

Under n-step TD we need to look forward through the next n-steps
of the algorithm and then preform an update. TD(λ), which we de-
scribe shortly, makes use of the memoryless property of the geomet-
ric distribution to give a simplified update equation. In particular,
suppose that we apply n-Step TD with weight (1 − λ)λn then at the
end of each episode we perform the update

R(x) α
←−

∞∑
n=0

(1 − λ)λn
n∑

k=0

βkd(x̂k, x̂k+1) =

∞∑
k=0

λkβkd(x̂kx̂k+1)

for each x. Here we let x̂0 be the first visit to x and we let x̂1, x̂2, ... be
the subsequent states.

Def 152 (TD(λ) – Offline). The above update equation above gives
the Offline update for TD(λ) under a first visit update.

If we perform the above update at the end of each episode for every
visit to x, we have

R(x) α
←−

∞∑
v=1

∞∑
k=0

λkβkd(x̂(v)
k x̂(v)

k+1)

where x̂(v)
0 be the vth visit to x and we let x̂(v)

1 , x̂
(v)
2 , ... be the subsequent

states, then we gain the every visit update formulation.

219

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

Notice λ = 0 corresponds to TD(0) and TD(1) gives Monte-Carlo
policy evaluation. Like n-step TD, trades bias and variance through
its parameter λ.

TD(λ) – Online

The TD(λ) algorithm appears to only work offline, as we need to
record the chain’s transitions over the whole episode and then up-
date each term. However we can see a much simpler view exists
by extracting the contribution of each term to the update. We now
construct an update at every time step rather than at every visit.

Suppose we visited x just once at time τ. The contribution to the
update at the end of the episode is

R(x)←− R(x) + α
∞∑

t=τ

(λβ)t−τd(xt, xt+1)

We could view this single update as a sequence of updates occurring
at each time. So if we update at every time t, the contribution from
this visit to x at time τ would be

R(x)← R(x) + α(λβ)t−τ︸ ︷︷ ︸
=:E(t)

d(xt, xt+1)

We could express the recursion that E(x) satisfies more compactly
as follows:

E(x)← (λβ)E(x) + αI[xt = x] (4.3)

Notice, if we wanted to implement the every-visit update, the above
recursion would stay the same. If we wanted to implement the first-
visit update the indicator function above would only be applied at
the first visit to x (and be zero there-after).

Def 153 (Eligibility Trace). E(x) as described above, (4.3), is called
the eligibility trace of the episode

The eligibility trace records a weighted count of how many times
x has been visited so far. Notice, because λ is applied geometrically
in TD(λ), we do not need to record how long since x was last visited.

We can now perform an online version of TD(λ)

220

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

Def 154 (TD(λ) – Online). At each time step with current state x and
next state x̂, perform the following update to every state x′

E(x′)← (λβ)E(x′) + αI[x′ = x]
R(x′)←− R(x′) + E(x′)d(x, x̂).

Here d(x, x̂) is the current temporal difference, and we start initially
with E(x) = 0.

Further TD methods.
We briefly mention a few quick generalization of the TD methods.

Importance Sampling. Suppose that we want to evaluate R(x) =

EP
x

[∑
t β

tr(x̂t)
]
where Pxy gives the probability of transitions. However,

the simulator used does transitions with probability Qxy. Then

EP
x [f (x, x̂)] =

∑
y

Pxy f (x, y) =
∑

y

Qxy
Pxy

Qxy
f (x, y) = EQ

x

[
Pxx̂

Qxx̂
f (x, x̂)

]
for any function f : X2

→ R. For instance, TD(0) is searching for the
fixed point

0 = EP
x
[
r(x) + βR(x̂) − R(x)

]
= EQ

x

[
r(x) + βR(x̂)

Pxx̂

Qxx̂
− R(x)

]
.

Thus, given the simulator generates transitions under Q, an impor-
tance sampled TD(0) w.r.t. P would be

R(x) α
←− r(x) + βR(x̂)

Pxx̂

Qxx̂
− R(x) .

Notice importance sampling for more general functions would be,

EP
x [f (x̂0, ..., x̂t)] = EQ

x

 f (x̂0, ..., x̂t)
t−1∏
s=0

Px̂s,x̂s+1

Qx̂s,x̂s+1

 .
We leave it to the reader to use this to figure more general impor-
tance sampling update rules e.g. for Monte-carlo, n-step, TD(λ).

221

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

Stopping Times. If σ is a stopping time then we can update at a
stopping time and the appropriate TD update is

R(x̂0) α
←− r(x̂0) + ... + βσ−1r(x̂σ−1) + βσR(x̂σ) − R(x̂0)

Notice TD(λ) is essential this update with the stopping time being a
geometrically distributed with parameter λ. We include the possi-
bility that σ = ∞ in which case Monte-carlo methods are included.
Further n-step and TD(0) are instances where the stopping time is
constant.
Resampling and Branching. Suppose τ is a stopping time. For
example, τ could be the time the total reward so far goes above some
predetermined level. We can resample the trajectory from the point
τ and perform two or more update. Thus we can search around
that point for good trajectories.
Insert Picture here

For two updates, suppose x̂(1)
τ+1, x̂

(1)
τ+2, ..., x̂

(1)
σ(1) and x̂(2)

τ+1, x̂
(2)
τ+2, ..., x̂

(2)
σ(2) are

two trajectories for stopping times σ(1) and σ(2) after time τ. We can
then perform two TD updates

R(x̂0) α
←−

τ∑
t=0

βtr(x̂t) +

σ(1)
−1∑

t=τ+1

βτ+1r(x̂(1)
τ+1) + βσ

(1)
R(x̂(1)

σ(1)) − R(x̂0)

R(x̂0) α
←−

τ∑
t=0

βtr(x̂t) +

σ(2)
−1∑

t=τ+1

βτ+1r(x̂(2)
τ+1) + βσ

(2)
R(x̂(2)

σ(2)) − R(x̂0) .

Even if the event τ does not occur, (and thus σ(1), σ(2) and τ are all
infinite) then you still need to update the objective twice, otherwise
you introduce bias into the system.
TD Trees. The above argument gives a simple method for resam-
pling and branching. With this branching argument, we can in
principle branch an arbitrary predetermined number of times. Here
we can create a tree and we must perform an update for each leaf
in that tree (even if the associated stopping time is infinite). This
somewhat related to the idea of Monte-Carlo Tree search which we
will discuss later.

References.
Temporal difference methods were introduced by Sutton [47]. So
the text of Sutton and Barto is the best place to go to to read more

222

4.2. POLICY EVALUATION: MC AND TD METHODS NSW

on this [48].

223

4.3. Q-LEARNING NSW

4.3 Q-learning

• Q-learning and a proof of convergence.

Q-learning is an algorithm, that contains many of the basic
structures required for reinforcement learning and acts as the basis
for many more sophisticated algorithms. The Q-learning algorithm
can be seen as an (asynchronous) implementation of the Robbins-
Munro procedure for finding fixed points. For this reason we will
require results from Section 2.2 when proving convergence.

A key ingredient is the notion of a Q-factor as described in Sec-
tion 0.4. Recall that optimal Q-factor, Q(x, a), is the value of starting
in state x taking action a and thereafter following the optimal policy.
In Prop 34 we showed that this solved the recursion:

Q(x, a) = Ex,a[r(x, a) + βmax
â

Q(X̂, â))] . (4.4)

Def 155 (Q-learning). Given a state x, an action a, its reward r(x, a)
and the next state x̂, Q-learning performs the update

Q(x, a) α
←− r(x, a) + βmax

a′∈A
Q(x̂, a′) −Q(x, a)

where α is a positive (learning rate) parameter. Recall x α
←− dx means

reset x with x′ such that x′ = x + αdx.
To implement this as an algorithm, we assume that we have a se-

quence of state-action-reward-next_state quadruplets {(xt, at, rt, x̂t)}∞t=0
and we apply the above update to each of the terms in this sequence.

Thrm 156. For a sequence of state-action-reward triples {(xt, at, rt, x̂t)}∞t=0
Consider the Q-learning update for (x, a, r, x̂) = (xt, at, rt, x̂t)

Qt+1(x, a) = Qt(x, a) + αt(x, a)
(
r + max

a′
Qt(x′, a′) −Qt(x, a)

)
if the sequence of state-action-reward triples visits each state and
action infinitely often, and if the learning rate αt(x, a) is an adapted
sequence satisfying the Robbins-Munro condition

∞∑
t=1

αt(x, a) = ∞,
∞∑

t=1

α2
t (x, a) < ∞

224

4.3. Q-LEARNING NSW

then, with probability 1,

Qt(x, a)→ Q∗(x, a)

where Q∗(x, a) is the optimal value function.
Proof. We essentially show that the result is a consequence of The-
orem 16 in Section 2.2. We note that the optimal Q-function, Q =
(Q(x, a) : x ∈ X, a ∈ A) satisfies a fixed point equation

Q = F (Q) ,

with
Fx,a(Q) = Ex,a[r(x, a) + βmax

â
Q(X̂, â)] ,

for each x ∈ X and a ∈ A. We know from Prop 34 that for discounted
programming F (·) is a contraction. I.e.

||F (Q1) − F (Q2)||∞ ≤ β||Q1 −Q2||∞ .

Now notice that the Q-learning algorithm performs the update

Qt+1(x, a) = Qt(x, a) + αt(x, a)(F(Q)(x, a) −Qt(x, a) + ε(x, a)) ,

where

ε(x, a) = r + βmax
â

Q(X̂, â) − Ex,a[r(x, a) + βmax
â

Q(X̂, â)]

for (xt, at, rt, x̂t) = (x, a, r, x̂). The update above is a Robbin’s Munro up-
date. FurtherbNotice Q(x′, a′) remains the same for all other values
of x, a, the update is asynchronous. It is not hard to see that when
we condition on Ft the set of previous actions and states that

E[εt(xt, at)|Ft] = 0

and, a quick calculation shows,2 that

E[εt(xt, at)2
|Ft] ≤ 2r2

max + 2β2 max
x,a

Qt(x, a)2 .

From this we see that we are working in the setting of Theorem 16
and that the condtions of that theorem are satisfied. Thus it must
be that

Qt(x, a) −−−→
t→∞

Q∗(x, a)

where Q∗(x, a) satisfies Q∗ = F (Q∗). In otherwords, as required, it
satisfies the Bellman equation for the optimal Q-function and thus
is optimal. �

2Note (x + y)2
≤ 2x2 + 2y2

225

4.3. Q-LEARNING NSW

Q-learning code with learning step and ε-greedy exploration.3

class Q_learning (Q_function) :
def __ in i t__ (se l f , l r =0.1) :

s e l f . l r = l r

def learn (se l f , state , action , reward , next_state ,
done=False , discount =1.) :

s e l f .add (state , action)
se l f .add (next_state)

dQ = reward \
+ discount ∗ se l f .max(next_state) \
− se l f [state] [action]

i f done :
dQ = reward − se l f [state] [action]

se l f [state] [action] += se l f . l r ∗ (dQ)

def action (se l f , state , explore_prob =0.) :

i f random.random () > explore_prob :
return se l f .argmax (state)

else :
Actions = l i s t (s e l f [state] . keys ())

random_action = random. choice (Actions)
return random_action

Other variants.
We will discuss some variants in separate sections, but we discuss
a few simple variants of Q-learning.

Double Q-learning. Double Q-learning, as the name suggests, is
a variation of Q-learning where you maintain two Q-functions Q(A)

and Q(B) and you update one in terms of the other:

Q(A)(x, a) α
←− r(x, a) + βQ(A)(x̂, b̂) −Q(A)(x, a)

Q(B)(x, a) α
←− r(x, a) + βQ(B)(x̂, â) −Q(B)(x, a)

3The code is subclass of a dictionary object with .max, argmax, .add methods.
Here .add adds new states or actions to the Q-function.

226

4.3. Q-LEARNING NSW

where
â = argmax

a∈A
Q(A)(x, a) and b̂ = argmax

b∈A
Q(B)(x, b) .

It’s not really clear at first why this should help. The problem
it tries to resolve is this: in traditional Q-learning there is a max-
imization over actions and the Q-factor is a noisy estimate of the
optimal Q-factor. In general, it is true that

E[max
â

Q(x̂, â)] ≥ max
â
E[Q(x̂, â)]

with the inequality being increasingly strict the more random the
Q-function estimate Q(x̂, ·) is.

The reason it helps is the following: suppose Aa and Ba are in-
dependent identical random variables with mean Ā for each a ∈ A.
Suppose â = argmaxa Aa and b̂ = argmaxa Ba. Notice

E[Aâ] > max
a

Āa,

but E[Ab̂t] = Āb̂ (here we take the expectation over A given B) so

E[Ab̂] = E[Āb̂] < max
b

Āb

In summary, we go from over-estimating the maximum A to under-
estimating. In general, it depends if over-estimating is worse than
under-estimating. However, over estimating tends to occur due to
outliers that can mess up training (particularly if function approx-
imation is being used). So to achieve training with more modest
updates double Q-learning is generally a good idea. Further conver-
gence is guaranteed by much the same analysis as for Q-learning.
(We leave this proof as an exercise for the reader).

Advantage Updating / Duelling. For Q-learning the value func-
tion V which is the largest Q-factor determines the optimal policy.
However, the magnitude of the value function V can differ from the
relative sizes of the Q-factors. Specifically, during training the Q-
factors of several action can get be close to V but V can be really
big. The value of the Q-factor update is dominated by the size of V
and so this can mean sub-optimal actions can often fluctuate above
their true values and thus inhibit convergence.

The idea of advantage updating is to separate our the task of
finding V from the task of finding how much less Q is relative to V.
The difference between V and Q is called the advantage and it is
defined as follows:

227

4.3. Q-LEARNING NSW

Def 157 (Advantage). For a value function V(x) and Q-factors Q(x, a),
the advantage function is defined by

A(x, a) := Q(x, a) − V(x), x ∈ X, a ∈ A .

Notice for optimal Q-factors and values, the advantage function
is negative (when maximizing) and equal to zero for optimal actions.
Under a general policy, if the advantage function is positive for some
a then this suggests that improvement to the current policy can be
made by increasing the probability of playing action a.

An advantage updating algorithm does the following steps when
each state action-pair is visited:

A(x, a)←− A(x, a) − Amax(x) (4.5a)

A(x, a) α
←− r + βV(x̂) − V(x) + Amax(x) − A(x, a) (4.5b)

V(x)
γ
←− ∆Amax(x)/α (4.5c)

t where Amax(x) := maxa A(x, a) and ∆Amax(x) is size of the last change
in the value value of Amax(x) (from step (4.5b)).

If we take γ = α, the following algorithm is really just the Q-
learning algorithm.
Proposition 6. If γ = α then, when (4.5) is applied,

Q(x, a) = V(x) + A(x, a) − Amax(x) , (4.6)
obeys the Q-learning update. Consequently, the policy implied by the
advantage function A(x, a) converges to the optimal policy.
Proof. Clearly,

V(x) = max
a

Q(x, a) . (4.7)

Notice that step (4.5a) of the algorithm sets Amax(x) = 0. Also notice
that any shift in A(x, a) applied equally to all a will not effect the
change applied in the update (4.5b). The update (4.5c) ensures that

V(x) − Amax(x) = Ṽ(x) − Ãmax(x) (4.8)
where Ṽ and Ã denotes the values before the update are made. So
here V(x)−Amax(x) stays constant. If we add this to both sides of (4.8)
to the final update (4.5c) and then apply (4.6) and (4.7) we recover:

Q(x) = V(x) + A(x, a) − Amax(x)
←− V(x) + A(x, a) − Amax(x)

+ α
(
r + βV(x) − V(x) − A(x, a) + Amax(x)

)
= Q(x, a) + +α

(
r + βmax

a
Q(x, a) −Q(x, a)

)
.

228

4.3. Q-LEARNING NSW

Q-learning converges under the appropriate step size choice given
in Theorem 156. So since Q(x, a) convergence and V(x) = maxa Q(x, a),
V(x) convergences. Thus A(x, a) − Amax from (4.6) convergence and
since Amax = 0 we see that the advantage functions converge, and
these (along with Q(x, a)) imply the policy given by A(x, a) in the limit
is optimal. �

Although advantage updating above is more-or-less identical to
Q-learning, the changes are more pronounced when we later apply
function approximation with a Neural Network. In this situation,
a Q-learning step only applies an update to each state action pair,
but advantage updating applies an update to both V(x) and one
value of A(x, a). Thus each update has an impact on every Q-value
through V(x). The combination of advantage updating and func-
tion approximation have come to be called these are called Duelling
architectures.

References.
This section is based on reading Tsitsiklis [49]. An alternative proof
is given by Jaakkola et al.[25] which applies a slightly esoteric fixed
point method of Dvoretzky.

Double Q-learning is first proposed by Hasselt [23]. The Advan-
tage updating algorithm [with some minor modification to (4.5a)] is
first given by Baird [3]. Both ideas have been successfully applied
with neural network function approximation [52, 54].

229

4.4. SARSA NSW

4.4 SARSA
We consider a simple variant of Q-learning called Sarsa. Here SARSA
stands for State, Action, Reward, (next) State, (next) Action. This is
defined as follows.

Def 158 (Sarsa). Under Sarsa, starting in state x take action a (as
say ε-greedy from Q), then observe x̂ and reward r(x, x̂). Next, take
the action for that â (under the same rule derived from Q. then update

Q(x, a) α
←− r(x, x̂) + βQ(x̂, â) −Q(x, a)

and continue from state and action x̂, â.

Notice, unlike with Q-learning, the value of the update depends
on the policy generating states and actions. For instance, if action
are chosen uniformly at random then the Sarsa update will converge
to the reward function of the randomized policy, while Q-learning
will still converge to the optimal value function.

To account for this we have to let our choice of actions converge
to the optimal action for each state. Such policies are called GLIE
where GLIE stands for Greedy in the Limit with Infinite Exploration.

Def 159 (GLIE). A policy is GLIE if

• each action is chosen infinitely often for every state,

• the greedy action with respect to the Q-function is chosen with
probability 1 in the limit.

The most straight forward choice of GLIE policy is ε-greedy (recall
the section on Bandits) where ε = 1/Nt where Nt is the number of
episodes simulated by time t.

Given the policy is GLIE and each state is visited infinitely often
then Sarsa will converge to the optimal Q-function.

Theorem 24. For a discounted program, if each state is visited in-
finitely often and actions are chosen by a GLIE policy at each state
then Sarsa converges to the optimal value function with probability 1.

Proof. The proof is much the same as for Q-learning. Note that
Sarsa makes the update

Qt+1(x, a) = Qt(x, a) + αt(x, a)
{
r(xt, at) + βQt(xt+1, at+1) −Qt(xt, at)

}
230

4.4. SARSA NSW

where here αt(x, a) = 0 for (x, a) , (xt, at). Now focusing on x = xt and
a = at, we can rearrange the above expression as follows

Qt+1(xt, at)

= Qt(xt, at) + αt(xt, at)
{
r(xt, at) − βmax

â
Qt(xt+1, x̂) −Qt(xt, at)

}
+ αt(xt, at)β

[
max

â
Qt(xt+1, x̂−Qt(xt+1, at+1)

]
= Qt(xt, at) + αt(xt, at)

[
Fxt,at(Qt) −Qt(xt, at)

]
+ αt(xt, at)δt + αt(xt, at)βet

where here
Fx,a(Q) := Ex,a[r(x, a) + βmax

â
Q(x̂, â)]

which is the same β-contraction used in the proof for Q-learning;
and

δt :=r(xt, at) + βmax
â

Qt(xt+1, â) −Q(x, a) − E[r(xt, at) + βmax
â

Q(xt, â) −Q(xt, at)|Ft]

+ max
â

Qt(xt+1, â) −Qt(xt+1, at+1) − E[max
â

Qt(xt+1, â) −Qt(xt+1, at+1)|Ft]

where here Ft = (xs, as : s ≤ t) and we note that δt is a bounded
Martingale difference sequence; and

et+1 = E
[
max

â
Qt(xt+1, â) −Qt(xt+1, at+1)

∣∣∣∣Ft

]
which satisfies

et → 0

as t→∞, since Qt(x, a) is bounded (note each update is bounded for
a discounted progrma) and our policy is GLIE (so the probably of
choosing the maximizing action goes to one).

Thus if we define εt = δt + βet, then we safisfy exactly the condi-
tions of the Asynchronous Robbins-Munro update 2.4 in Theorem
16, that is

Qt+1(x, a) = Qt(x, a) + αt(x, a)
[
Fx,a(Qt) −Qt(x, a) + εt

]
and by that result, for all x, a,

Qt(x, a) −−−→
t→∞

Q∗(x, a)

where Q? = F(Q?) or, in other words,

Q?(x, a) = Ex,a[r(x, a) + βmax
â

Q(x̂, â)] .

So the Bellman equaiton is satisfied and so the limit Q?(x, a) is the
optimal value function. �

231

4.4. SARSA NSW

So it is good that we have a convergence proof. However, it is
easy to construct simple examples of GLIE policies where SARSA
does not converge (as states are not automatically visited infinitely
often for GLIE policies)

Remark 160. Consider the following example. Insert Picture
Here there are two actions, and two states with rewards where the
process terminates. Suppose we apply an ε-greedy policy with ε =
1/N where N is the number of episodes so far. If we assume that
initially Q(x, 0) > Q(x, 1) for all x, the probability of visiting state x = 2
is 1/N2 and the sum of these probabilities

∑
N 1/N2 is finite. Therefore

by the Borel-Cantelli Lemma there can only be finitely many visits
to x = 2 while Q(x, 0) > Q(x, 1). Thus there is a positive probability
that SARSA will stop visiting x = 2 and thus the Q function will not
converge to the optimal Q-function.

232

Chapter 5

Reinforcement Learning with
Function Approximation

233

5.1. TEMPORAL DIFFERENCES: LINEAR APPROXIMATION NSW

5.1 Temporal Differences: Linear Approxi-
mation

Temporal difference methods evaluate the value of states (and state
action pairs) of a given policy. Previously, when we introduced tem-
poral difference learning, we needed to record a value function esti-
mate for every state visited. However, when the set of states is large
(or infinite) this is not feasible. Instead, we can interpolate between
the states visited in much the same way that we do in linear regres-
sion. Thus, we approximate the value of each state. Consequently,
there is some degradation in the qualify of the solution attained,
but we can achieve a practical method for policy evaluation.

First we give the high level idea behind linear function approxi-
mation. Then we give an analysis of TD(0).

For a Markov chain x̂ = (x̂t : t ∈ Z+), our aim is to estimate the
reward function

R(x) := Ex

 ∞∑
t=0

βtr(x̂t)

 (5.1)

here rewards given by (r(x) : x ∈ X). We use the states xt and their
rewards r(xt) as data and with this we approximate the reward func-
tion R(x) with a linear approximation,

R(x;w) = w>φ(x) =
∑
j∈J

w jφ j(x).

Here we have taken our state x and extracted features, φ j(x) for j in
finite set J. Interpreting each φ j = (φ j(x) : x ∈ X) as a (very long)
vector, we assume {φ j : j ∈ J} are linearly independent. We thing
of the set of features (φ j(x) : j ∈ J) as giving a low dimensional
representation of the state x. We then apply a vector of weights
w = (w j : j ∈ J) to each of these features.

Our job is to find weights that give a good approximation to R(x).
We know, for instance, that R(x) is a solution to the fixed point equa-
tion

R(x) = Ex[r(x) + βR(x̂)︸ ︷︷ ︸
=:Tg(x)

], x ∈ X. (5.2)

The target, Target(x), is an estimate of the true value of R(x;w) Other
targets can be used, e.g. the Monte-carlo target, n-step TD or TD(λ).

234

5.1. TEMPORAL DIFFERENCES: LINEAR APPROXIMATION NSW

In function approximation, we cannot get the expected reward to
equal its target. So we attempt to minimize the difference between
our reward function estimate and its target. For example

minimize
w

Eµ
[
(Tg(x) − R(x;w))2

]
.

Here the expectation is over (µ(x) : x ∈ X), the stationary distribution
of our Markov process. We do not know the stationary distribution
µ, but, asymptotically, we sample from it with the Markov chain
(xt : t ∈ Z+). Thinking of this as a linear regression problem, we
receive input data φ(x) and we need to apply weights to these,w>φ(x)
to predict the output Tg(x). We can apply a Stochastic Gradient
Descent update to w

w ← w + α
(
Target(x) − R(x;w)

)
∇wR(x;w) .

Just like with tabular methods these updates can be applied online,
offline, first-visit, every-visit. Note we’ve conveniently ignored the
dependence on w in our targets. Both empirically and theoretically
this works out surprisingly well.

Analysis of TD(0).
We analyze linear function approximation for the TD(0) target.

Linear TD(0) Algorithm. The TD(0) target for a reward function R
is r(x) + βR(x̂;w), where x̂ is the next state after x. We define the
operation T by

TR(x) = Ex[r(x) + βR(x̂;w)].

Under a linear function approximation this gives an update

w
α
←−

(
r(x) + βR(x̂;w) − R(x;w)

)
∇wR(x;w)

=
(
r(x) + βw>φ(x̂) −w>φ(x)

)
φ(x) .

O.D.E. and Convergence. The stochastic approximation scheme
above is an approximation to the o.d.e.

dw
dt

= Eµ
[{

r(x) + βφ(x)>w − φ(x)w
}
φ(x)

]
235

5.1. TEMPORAL DIFFERENCES: LINEAR APPROXIMATION NSW

where µ is the stationary distribution of our Markov chain. We also
define the norm

||R||µ :=
(∑

x∈X

µ(x)R(x)2
)1/2

.

We let Π be the projection with respect to || · ||µ on to the space
spanned by {φ j : j ∈ J}. Specifically,

ΠR = argmin
φ>w:w∈RJ

Eµ
[(

R(x) − φ(x)>w
)2
]
.

We can prove the following about the convergence and limit of the
above o.d.e. .

Theorem 25. The o.d.e. converges to aa limit w? satisfying

R(w?) = ΠTR(w?) (5.3)

Moreover, when compared with the true reward R?(x), the approxima-
tion R(x;w?) satisfies

||R?
− R(w?)||µ ≤

1
1 − β

||R?
−ΠR?

||µ . (5.4)

Before proceeding with the proof, we briefly discuss the result.
Notice in (5.1), without the projection we have R = TR which is the
condition for the true reward function. Thus we see that R(w?) is the
fixed point reached when we apply the TD update and then project
back into the space spanned by φ j, j ∈ J.

In (5.4), we see that the error between the true reward and our
approximation with within a factor of the smallest error we could
have received from approximating. This is important, but the qual-
ity of the bound does degrade as we let β→ 1.

Proof. We first analyse the convergence of solutions of our o.d.e..
The fixed point of the o.d.e. is given by

0 = Eµ
[{

r(x) + βφ(x̂)>w − φ(x)>w
}
φ(x)

]
(5.5)

Substituting the above for the Eµ[φ(x)r(x)] term in our o.d.e. gives

dw
dt

= Eµ
[{
βφ(x̂)>(w −w?) − φ(x)>(w −w?)

}
φ(x)

]
= Eµ

[{
βPφ(x)>(w −w?) − φ(x)>(w −w?)

}
φ(x)

]
(5.6)

236

5.1. TEMPORAL DIFFERENCES: LINEAR APPROXIMATION NSW

Above P = (Pxy : x, y ∈ X) is the transition matrix of our Markov
chain, and P f (x) = E[f (x̂)|x] =

∑
y Pxy f (y), for any function f : X → R.

Shortly, we will require the following inequality:

Eµ
[

f (x)P f (x)
]
≤ Eµ

[
f (x)2

]
. (5.7)

We prove this in Lemma 23 immediately after this proof. Now

d
dt

{1
2
||w(t) −w?

||
2
}

=
(
w −w?)> d

dt
w(t)

(5.6)
= Eµ

[
(w −w?)>φ(x)βPφ(x)>(w −w?)

]
− Eµ

[
(w −w?)>φ(x)φ(x)>(w −w?)

]
(5.7)
≤ βEµ

[
(w −w?)>φ(x)φ(x)>(w −w?)

]
− Eµ

[
(w −w?)>φ(x)φ(x)>(w −w?)

]
= −(1 − β)Eµ

[(
φ(x)>(w −w?)

)2
]
.

Consequently, if w(t) , w? then by linear independence φ(x)w ,
φ(x)w for some x, so the final expression above is negative. Thus by
the Lyapunov convergence result (8), 1

2 ||w(t) −w?
||

2
→ 0 as t→∞.

We now have convergence of our o.d.e. to w?. We now should
how w? can be interpreted as a projection. Lets find the project of
a reward function R0(x):

min
w
Eµ

[(
R0(x) − φ(x)>w

)2
]

=⇒ 0 = Eµ
[
φ(x)

(
R0(x) − φ(x)>w

)]
=⇒ φ(x′)>w = φ(x′)>Eµ[φ(x)>φ(x)]−1Eµ[φ(x)R0(x)]

=: ΠR0(x′) .

Notice the steps above are the same as we apply when doing linear
regression. Notice further that (5.5) is the condition for

R(x′;w?) = ΠTR(x;w?)

as required.
Finally note that the optimal reward function is the fixed point

R? = TR? and T is a β-contraction (see Prop 34c) and that projec-
tions always move distances closer (see Lemma 25). Applying these
observations gives

||R?
−R(w?)||µ ≤ ||R?

−Π(R?)||µ + ||Π(T(R)) −Π(T(R(w?))||µ
≤ ||R?

−Π(R?)||µ + β||R?
−R(w?)||µ .

237

5.1. TEMPORAL DIFFERENCES: LINEAR APPROXIMATION NSW

So, as required,

||R?
−R(w?)||µ ≤

1
1 − β

||R?
−Π(R?)||µ .

�

Lemma 23.
Eµ

[
f (x)P f (x)

]
≤ Eµ

[
f (x)2

]
. (5.8)

Proof. By Cauchey-Schwartz

Eµ
[

f (x)P f (x)
]
≤ Eµ

[
f (x)2

] 1
2
Eµ

[
(P f (x))2

] 1
2
. (5.9)

Now

Eµ
[
(P f (x))2

]
=

∑
x

µ(x)
∑

y

(Pxy f (y))2

≤

∑
x

µ(x)
∑

y

Pxy f (y)2

=
∑

y

∑
x

µ(x)Pxy f (y)2 =
∑

y

µ(y) f (y)2 = Eµ[f (x)2]

where in the last inequality we use the fact that µ is the stationary
distribution of our Markov chain. Substituting this into (5.9) gives
the result. �

References
The section is based on reading Tsitsiklis and Van Roy [50], but also
see Bertsekas and Tsitsiklis [7].

238

5.2. POLICY GRADIENTS NSW

5.2 Policy Gradients
While almost all of the approaches considered so far in these notes
focus on obtaining the value of each state and action in order to find
an optimal policy. There is a muchmore direct approach that can be
applied. Here we parameterize the set of policies and differentiate
the objective. We can then simply apply gradient ascent to this to
optimize.

The approach is appealing. However, from a theoretical perspec-
tive, it’s a thorny issue: we cannot always exclude local minima or
directly guarantee sufficient exploration. Only recently are there
results that give conditions for convergence. Further it is not clear
how data can be reused as is done in Q-learning. With that said,
the results that do exist are elegant and many of the most success-
ful methods in recent years make use of policy gradients.

Parameterized Policies. We let πθ(a|x) be the probability that we
choose action a in state x. Here θ parameterize the set of policies.
For example, a popular choice is the soft-max function:

πθ(a|x) =
eθ>φ(a|x)∑
a′ eθ

>φ(a′|x)

where like in our analysis of linear function approximation, θ(a|x)
act as basis functions. However, may other choices exists.

Note that the probability of states and actions x = (x0, ..., xT) and
a = (a0, ..., aT−1) is

πθ(xT,aT) :=
T−1∏
t=0

p(xt+1|xt, at)πθ(at|xt)

The expected reward under policy πθ is

V(θ) := Eπθ [Q(x̂, â)] =
∑
x,a

Q(x,a)πθ(x,a)

where

Q(x,a) :=
T−1∑
t=0

βtr(xt, at) .

Differentiating the Reward Objective. We now cover a number
calculations where we differentiate the reward objective over θ. These

These are summarized by the following theorem.

239

5.2. POLICY GRADIENTS NSW

Theorem 26 (The Policy Gradient Theorem).

∇θV(θ) = Eπθ
[
Q(x,a)∇θ logπθ(x,a)

]
= Eπθ

T−1∑
t=0

βtQt∇θ logπθ(at|xt)


where Qt =

∑T−1
s=t β

s−tr(xs, as).

Proof. We can differentiate the reward

∇θV(θ) =
∑
x,a

Q(x,a)∇θπθ(x,a)

=
∑
x,a

{
Q(x,a)∇θ logπθ(x,a)

}
πθ(x,a)

= Eπθ
[
Q(x̂, â)∇θ logπθ(x̂, â)

]
. (5.10)

Thus we can apply stochastic gradient descent on the above objec-
tive by sampling

Q(x̂, â)∇θ logπθ(x,a) .

Further we note that we can simply the derivative above,

∇θ logπθ(x,a) = ∇θ

log
T−1∏
t=0

p(xt+1|xt, at) + log
T−1∏
t=0

πθ(at|xt)


=

T−1∑
t=0

∇θ logπθ(at|xt)

This calculation is important for reinforcement learning applications,
as we do not need to know p(x̂|x, a) to calculate the change in the
above likelihood function for our policy.

We will shortly use the following

E[∇θ logπθ(â|x)] =
∑

a

πθ(a|x)
∇θπ(a|a)
πθ(a|x)

= ∇θ

∑
a

π(a|x)

︸ ︷︷ ︸
=1

= 0 , (5.11)

and, consequently for s < t,

Eπθ
[
r(xs, as)∇θ logπθ(at|xt)

]
= Eπθ

[
r(xs, as)Eπθ

[
∇θ logπθ(at|xt)|xt

]]
= 0
(5.12)

240

5.2. POLICY GRADIENTS NSW

Finally, we note that we can rearrange the objective (5.10) to
account for the contribution from each individual state and action
(xt, at):

Eπθ
[
Q(x,a)∇θ logπθ(x,a)

]
= Eπθ

(T−1∑
s=0

βsr(xs, as)
)(T−1∑

t=0

∇θ logπθ(at|xt)
)

=

T−1∑
t=0

T−1∑
s=0

βsEπθ
[
r(xs, as)∇θ logπθ(at|xt)

]
by (5.12)

=

T−1∑
t=0

T−1∑
s=t

βsEπθ
[
r(xs, as)∇θ logπθ(at|xt)

]
= Eπθ

T−1∑
t=0

βtQt∇θ logπθ(at|xt)


as required. �

Although the proof above suggests that T is finite. The proof will
work for T = ∞ in a discounted program.

Further for later use it is worth noting that in the above proof
we also proved the following Lemma.

Lemma 24.
E[∇θ logπθ(â|x)] = 0 .

Here the expectation is taken over â not x.
A further form of the policy gradient theorem is the following.

Corollary 1.

∇V(θ) = Eπθ

T−1∑
t=0

βt
∇φQπθ(xt, πφ)

∣∣∣∣
φ=θ


Proof.

E
[
Q̃t(x̂t, ât)∇θ logπθ(at|xt)

∣∣∣xt

]
=E

[
Qπθ(xt, at)∇θπθ(a|xt)

∣∣∣xt

]
=

∑
a

Qπθ(xt, a)∇θπθ(a|xt)

=∇φQπθ(xt, πφ)
∣∣∣∣
φ=θ

�

241

5.2. POLICY GRADIENTS NSW

The above corollary is not directly useful for designing algorithms
(as we don’t know the true Q-function in the expectation). However,
it gives a useful interpretation of the policy gradient update. We are
making a small one-step improvement to the Q-function, in much
the same way that policy iteration operates.

Some Algorithms.
Now we can use our results to design algorithms.

REINFORCE. Given the Policy Gradient Theorem above the REIN-
FORCE algorithm performs the following per episode update

θ← θ + γQ̃∇θ logπθ(x,a)

or as a per-visit update update does

θ← θ + γQ̃t∇θ logπθ(at|xt)

where Q̃ =
∑T

s=0 β
sr(xs, as) and Q̃t =

∑T
s=t β

sr(xs, as).

REINFORCE with a Baseline. By Lemma 24, any function of x can
be added to the REINFORCE update and the mean of the update
will not change. I.e.

E[B(x)∇θ logπθ(â|x)] = 0 .

So

∇θR(θ) = Eπθ

T−1∑
t=0

βt (Qt − B(xt)) logπθ(at|xt)


Although the mean stays the same the variance can be reduced if
we have a decent estimate of the mean of Q̃t. We can do this by
using a temporal difference function approximation for the mean
value of each state

w← w + α
(
r + βVw(x̂) − Vw(x)

)
∇wVw(x) (5.13a)

and we update the policy weights

θ← θ + α (Qt − Vw(xt))∇θ logπθ(â|x) (5.13b)

242

5.2. POLICY GRADIENTS NSW

We implement these updates per step.

Actor-Critic. Notice when we apply the updates above (5.13) the
terms r + βVw(x̂) and Qt serve the same purpose: they are both es-
timates of the Q-function for (xt, at). So we could reduce variance
further by replacing Qt with r + βVw(x̂). This gives the following al-
gorithm

δ←
(
r + βVw(x̂) − Vw(x)

)
(5.14a)

w← w + αδ∇wVw(x) (5.14b)
θ← θ + αδ∇θ logπθ(â|x) (5.14c)

This algorithm is called an Actor-Critic algorithm. Here we within
of πθ as the "actor" that makes the decisions in the simulation. And
we think of Vw as the "critic" that evaluates the performance of the
actor.

Notice δ is the TD(0) error. However, any TD update could be
used. For example, in place of (5.14a), n-step TD would use:

δ← r1 + βr2 + ... + βnrn + βn+1Vw(x̂n+1) − Vw(x) . (5.14a′)

Convergence Issues with Policy Gradients.
Although they are often very effective, there can be theoretical (and
practical) issues with policy gradients. In order for a gradient de-
scent method to converge to a global minimum, we generally require
convexity (or some other monotonicity property). However when
minimizing costs, the policy gradient algorithm objective might non-
convex.1

An Example. Consider the example in Figure 5.1.
Here there is a high cost for switching between the two local

states A and B. If we suppose

πθ(R|A) = πθ(R|B) = θ ∈ [0, 1]

Notice in this case the stationary distribution is given by µ(A) =
1 − µ(B) = 1 − θ. Thus the average reward is

R(θ) = 1 · π(L|A)µ(A) + 2 · π(R|A)µ(A) + 2 · π(L|B)µ(A) + 0 · π(L|A)µ(A)

= (1 − θ)2 + 2θ(1 − θ) + 2(1 − θ)θ = 1 + 2θ − 3θ2 .

1Similarly when maximizing rewards the objective might be non-concave.

243

5.2. POLICY GRADIENTS NSW

Figure 5.1: Policy gradient counter-example.

A plot of this curve is given in Figure 5.2, and as you can see this
is clearly not a convex minimization problem. Thus if θ is initially
taken close to zero, a policy gradient algorithm will likely converge
on the sub-optimal local minimum at θ = 0.

Figure 5.2: The example’s non-convex cost function.

What this example shows is that even though the optimal policy
is in the parameter set this is not enough to guarantee convergence.
Even though our parameterization is linear on a bounded a convex
set of parameters. Note this is unlike linear function approximation
for the value function which will converge.

A Convergence Proof for Policy Gradients.
Here we give a convergence argument due to recent work of Bhan-
dari and Russo [8]. The idea is to observe that Corollary 1 shows
that the policy gradient algorithm is doing a one-step policy itera-
tion update (started a random initial state).

In this wemake the following assumptions about the Q-functions
and the policy class. Further we assume

244

5.2. POLICY GRADIENTS NSW

• Qπθ(x, a) is concave in a for all x and θ.

• Π = {πθ : θ ∈ Θ} is convex. I.e.

∀θ, θ′, (1 − α)πθ + απθ′ ∈ Π .

• The policy iteration π̂θ belongs to Π. I.e.

π̂θ(s) ∈ argmax
a

Qπ(s, a) .

• From the above ∀α ∈ [0, 1] ∃ θα s.t. πθα = (1 − α)πθ + απ̂θ. We
assuming our parameterization is suitably smooth so that the
following limit is well defined:

u = lim
α→0

θα − θ
α

with ||u||2 > 0.

Notice here u is the direction that updates in the policy iteration
direction:

dπθ
du

= π̂θ − πθ .

This is useful given the observation in Corollary 1.

Theorem 27.
dV(θ)

du
≥

1
1 − β

∣∣∣∣∣∣R(θ) −VR(θ)
∣∣∣∣∣∣
θ

whereV is the value iteration update: VR(x) := maxa r(x, a)+βEx,a[R(x̂)],
and where

||B||θ =

∞∑
t=0

(1 − β)Eπθ
[
βt
|B(x̂t)|

]
.

Proof. Notice that applying the Corollary to the Policy Gradient The-

245

5.2. POLICY GRADIENTS NSW

orem, Corollary 1, we have that

dV(θ)
du

= Eπθ

 ∞∑
t=0

βt d
du

Rπθ(xt, πφ)


= Eπθ

 ∞∑
t=0

βt
∑

a

∂Qπθ

∂a
(xt, a)

dπθ(a|x)
du


= Eπθ

 ∞∑
t=0

βt
∑

a

∂Qπθ

∂a
(xt, a)

(
π̂θ(a|x) − πθ(a|x)

)
≥ E

 ∞∑
t=0

βt {
VRπθ(xt) − Rπθ(xt)

}
=

1
1 − β

||VRπθ − Rπθ ||θ .

�

Now if we assume in addition that

• If
∑
∞

t=0(1 − β)βtPπθ(x̂t = x) > 0 for all x ∈ X .

and we assume the o.d.e dynamics

dθ
dt

= ∇θV(θ)

then the above theorem shows the following

Corollary 2.
V(θ)→ V?

where V? is the optimal value function.

Proof. We know from our proof for value iteration that if R(x, πθ) is
sub-optimal then R(x, πθ) ,VR(x, πθ). Also we know that

dV(θ)
dt

= ||∇θV(θ)||2 =
1

||∇θV(θ)||
max

v:||v||2=1
v>∇θV(θ)

≥
1

||∇θV(θ)|| · ||uθ||
u>∇θV(θ)

≥
||VRπθ − Rπθ ||

(1 − β)||∇θV(θ)|| · ||uθ||
> 0 .

�

246

5.3. LINEAR APPROXIMATION AND TD LEARNING NSW

5.3 Linear Approximation and TD Learning
First we give the high level idea behind linear function approxima-
tion. Then we give a somewhat informal analysis of TD(0).

For a Markov chain x̂ = (x̂t : t ∈ Z+), consider the reward function

R(x) := Ex

 ∞∑
t=0

βtr(x̂t)

 (5.15)

associated with rewards given by r = (r(x) : x ∈ X). We approximate
the reward function R(x) with a linear approximation,

R(x;w) = w>φ(x) =
∑
j∈J

w jφ j(x).

Here we have taken our state x and extracted features, φ j(x) for j
in finite set J, that we believe to be important to determining the
overall reward function R(x). Interpreting each φ j = (φ j(x) : x ∈ X) as
a vector, we assume {φ j : j ∈ J} are linearly independent. We then
apply a vector of weights w = (w j : j ∈ J) to each of these features.
Our job is to find weights that give a good approximation to R(x).

We know for instance that R(x) is a solution to the fixed point
equation

R(x) = Ex[r(x) + βR(x̂)︸ ︷︷ ︸
=:Target(x)

], x ∈ X. (5.16)

The target, Target(x), is an estimate of the true value of R(x;w) Here
the target random variable considered is the TD(0) target. Other
targets can be used, e.g. the term in the sum, (5.15), would be the
Monte-carlo target, and there are various options in between, c.f.
TD(λ).

In function approximation, we cannot get the expected reward to
equal its target. So we attempt to minimize the difference between
them. For example

minimize
w

Eµ
[
(Target(x) − R(x;w))2

]
.

Here the expectation is over µ = (µ(x) : x ∈ X), the stationary dis-
tribution of our Markov process. We can’t minimize this since we
do not know the stationary distribution µ. We can only get samples

247

5.3. LINEAR APPROXIMATION AND TD LEARNING NSW

and so we can instead apply Robbin’s-Munro/Stochastic Gradient
Descent update to w

w ← w + α
(
Target(x) − R(x;w)

)
∇wR(x;w) .

Just like with tabular methods these updates can be applied online,
offline, first-visit, every-visit.

Analysis of TD(0).
Let’s do an informal analysis of TD(0).

Linear TD(0) Algorithm. For TD(0) our target is r(x)+βR(x̂;w), where
x̂ is the next state after x. Under a linear function approximation
this gives an update

w ← w + α
(
r(x) + βw>φ(x̂) −w>φ(x)

)
φ(x) .

we let
g(x;w) :=

(
r(x) + βw>φ(x̂) −w>φ(x)

)
φ(x) .

Convergence Result. We argue (informally) that, for this iteration
scheme, w(t)→ w∗ where the limit function Φw∗ is in a factor of the
best approximation

||R −R(w∗)||µ ≤
1

1 − β
||R −Π(R)||µ .

Here we interpret R and R(w∗) as vectors R = (R(x) : x ∈ X) and
R(w) = (R(x;w) : x ∈ X). Also, we define the norm above by

||R||2µ =
∑
x∈X

µ(x)R(x)2 .

Average Behaviour. Suppose that our Markov chain x̂ is stationary
with stationary distribution µ(x). If we look at the expected change
in our update term we get

Eµ[g(x;w)]

=
∑

x

µ(x)r(x)φ(x) +
∑

x

∑
y

µ(x)(βφ(x)Pxyφ(y)> − φ(x)φ(x)>)w

= Φ>Mr −Φ>M[I − βP]Φw . (5.17)

248

5.3. LINEAR APPROXIMATION AND TD LEARNING NSW

Above Φ is the X × J matrix with entries Φxj = φ j(x) and M is the
X × X diagonal matrix with diagonal entries given by µ(x) . We use
these to define the length J vector b and the J × J matrix A, as
defined follows:

A := Φ>M[I − βP]Φ and b := Φ>Mr .

Differential Equation Analysis. So, roughly, w moves according
to the differential equation

dw
dt

= −Aw + b .

Now P is the transition matrix of a Markov chain. Since its rows
sum to 1, its biggest eigenvalue is 1. So we can expect that −(I −
βP) is in some sense "negative", specifically it can be shown that
(Φw)>M(I − βP)Φw < −(1 − β)||Φw||2µ. This then implies that

v>Av ≥ (1 − β)||Φv||2µ.

This is proven in Lemma 7 below.
This is sufficient to give convergence of the above differential

equation: take w∗ such that Aw∗ = b and take L(w) = 1
2 ||Φw − Φw∗||2

then

dL
dt

= ∇L(w) ·
dw
dt

= −(w −w∗)>A(w −w∗) ≤ −(1 − β)||Φw −Φw∗||2µ.

Thus we see that R(w(t)) = Φw(t) → Φw∗ = R(w∗), and since we
assume φ j are linearly independent w(t)→ w∗.

Approximation Error. Convergence is great and everything, but
we must verify that the solution obtained, w∗, is a “good” solution.
First, notice that the reward function R = (R(x) : x ∈ X) satisfies

R = T0(R), where T0(R) := r + βPR .

This is just (5.16) withR interpreted as a vector and the expectation
as a matrix operation with respect to transition matrix P.

Second, notice the approximation R(w) = (R(x;w) : x ∈ X) that is
closest to the rewards R, is given by a projection, specifically

Π(R) := Φ(Φ>MΦ)−1Φ>MR = argmin
R(w)

||R −R(w)||2µ .

249

5.3. LINEAR APPROXIMATION AND TD LEARNING NSW

Third, we see the equations satisfied by w∗ can be expressed in a
form somewhat similar to above expression R = T0(R). Specifically,
we rearrange the expression Aw∗ = b

Aw∗ = b ⇐⇒ Φ>M[I − βP]Φw∗ = Φ>Mr
⇐⇒ Φ>MΦw∗ = Φ>Mr + Φ>MβPΦw∗

⇐⇒ Φw∗︸︷︷︸
R(w∗)

= Φ[Φ>MΦ]−1Φ>M︸ ︷︷ ︸
Π

(r + βPΦw∗)︸ ︷︷ ︸
T0(R∗(w))

.

So, while R satisfies R = T0(R), we see that R(w∗) satisfies

R(w∗) = Π(T0(R(w∗)) .

We can use these identities satisfied by R and R(w∗) to show that
approximation is comparable to the best approximation of R. Since
T0 is a β-contraction and that projections always move distances
closer (both properties are relatively easy to verify, see Lemma 7):

||R −R(w∗)||µ ≤ ||R −Π(R)||µ + ||Π(T0(R)) −Π(T0(R(w∗))||µ
≤ ||R −Π(R)||µ + β||R −R(w∗)||µ .

So
||R −R(w∗)||µ ≤

1
1 − β

||R −Π(R)||µ .

Some Formal Analysis. Here are a few formal results that we men-
tion in the discussion above.

Proposition 7. Wedefine ||R||µ =
∑

x µ(x)R(x)2 and ‖P‖µ = sup f ‖P f ‖µ/‖ f ‖µ
a) ||P||µ ≤ 1.
b) The TD(0) map is a contraction that is if for function R : X → X we
let, TR(x) = r(x) + βPR(x) then

‖TR1 − TR2‖µ 6 β ‖R1 −R2‖µ

and
‖ΠTR1 −ΠTR2‖µ 6 β ‖R1 −R2‖µ

where Π is a projection in || · ||µ.
c)

(w − w∗)>Eµ[g(x; w)] ≤ −(1 − β) ‖Φw −Φw∗‖2µ .

250

5.3. LINEAR APPROXIMATION AND TD LEARNING NSW

Proof. a) Using Jensen’s Inequality below,

||P f ||2µ =
∑

x

µ(x)
(∑

y

Pxy f (y)
)2
≤

∑
x

µ(x)
∑

y

Pxy f (y)2

=
∑

y

f (y)2
∑

x

µ(x)Pxy︸ ︷︷ ︸
=µ(y)

=
∑

y

µ(y) f (y)2 = || f ||2µ .

In the curly brace, we are using that µ is a stationary distribution.
b)

‖TR1 − TR2‖µ = β ‖P (R1 −R2)‖µ 6 β‖P‖µ ‖R1 −R2‖µ

Since, ||P||µ ≤ 1, the result holds. Further since projections reduce
distances ||ΠR||µ ≤ ||R||µ the 2nd inequality holds too.
c) From the above calculation in (5.17), we have that

Eµ[g(x;w)] = ΦTM[r + βP − I]Φw
= Φ>M [T(Φw) −Φw]
= Φ>M[(I −Π) + Π] [T (Φw) −Φw]
= Φ>M [ΠT(Φw) −Φw] .

In the third, equality we use that Φ>(I −Π) = 0 which holds since Π
is a projection in || · ||µ onto the space spanned by Φ and thus (I−Π)
is orthogonal to this space.

Now applying the above inequality

(w −w∗)>Eµ[g(x;w)]

= (Φw −Φw∗)>M [ΠT(Φw) −Φw]

= (Φw −Φw∗)>M [ΠT(Φw) −ΠT (Φw∗) + Φw∗ −Φw]

= − ‖Φw −Φw∗‖2µ + (Φw −Φw∗)>M [ΠT(Φw) −ΠT (Φw∗)]

≤ − ‖Φw −Φw∗‖2µ + ‖Φw −Φw∗‖µ ‖ΠT (Φw) −ΠT (Φw∗)‖2µ
≤ − ‖Φw −Φw∗‖2µ + ‖Φw −Φw∗‖µ β ‖Φw −Φw∗‖µ

= −(1 − β) ‖Φw −Φw∗‖2µ

In the second equality above, we use that w∗ satisfied ΠT(Φw∗) =
Φw∗. The first inequality is the Cauchy-Schwartz inequality. The
second inequality, applies the contraction property from part b). �

251

5.3. LINEAR APPROXIMATION AND TD LEARNING NSW

References
The section is based on reading Tsitsiklis and Van Roy [50], but also
see Bertsekas and Tsitsiklis [7].

252

5.4. LINEAR APPROXIMATION AND STOPPING NSW

5.4 Linear Approximation and Stopping
We consider an optimal stopping problem as introduced in Section
0.6, and we apply a linear function approximation scheme like in
Section 5.3.

It is not straight-forward to prove that the results of Section 5.3
can be extended reinforcement learning methods like Q-learning.
However, optimal stopping is an example where this is possible.
There are essentially two reasons why:

1. A stopping rule does not interact with the process being esti-
mated. I.e. Changing the stopping rule does not change the
underlying process, which is not true for other MDPs.

2. The Q function has a simple form, like Q = r+βmax{r̄,V}, which
remains a contraction. (For example, if r,r̄, β and V are real
numbers then a short calculation shows that |Q′−Q| ≤ β|V−V′|.)

This suggests that the analysis for approximating rewards R should
pass over to optimal stopping problems.

Optimal Stopping Recap. We consider the problem of stopping to
maximize rewards rather than minimizing costs. We briefly recall
that we wish to stop a Markov chain x̂ = (x̂t : t ∈ Z+) with values
in state space X and transition probabilities given by the matrix
P = (Pxy : x, y ∈ X). Here r(x) is the reward for continuing at state x
and r̄(x) is the reward for stopping at state x. We consider the MDP

V(x) = max
τ
Ex

 τ−1∑
t=0

βtr(x̂t) + βτr̄(x̂τ)

 (5.18)

with discount factor β ∈ (0, 1). The above maximization is take over
all stopping times τ. The Bellman equation for this problem is

V(x) = max
{
r̄(x), r(x) + βEx[V(x̂)]

}
.

We view the left-hand expression as an operation on a vector. Specif-
ically, for R = (R(x) : x ∈ X), we let

TR(x) = max
{
r̄(x), r(x) + βEx[R(x̂)]

}
.

For the value function V, we define the optimal Q-factor by

Q(x) = r(x) + βEx[V(x)] .

253

5.4. LINEAR APPROXIMATION AND STOPPING NSW

and we define the operation S on the Q-function vector Q′ = (Q′(x) :
x ∈ X) by

SQ′(x) = r(x) + βEx [max {r̄(x̂),Q′(x̂)}] .

The value function V in (5.18) is the unique solution to the Bell-
man equation and moreover an optimal rule is found by letting τ∗ =
min{t : r̄(xt) ≥ V(xt)}.Note by the definitions above V(x) = max{r̄(x),Q(x)},
see Section 0.6 and Theorem 36 in Section 0.4. So equivalently we
can see that

τ∗ = min{t : r̄(xt) ≥ Q(xt)}

gives the optimal stopping time.
Throughout this section we assume that the Markov chain x̂ =

(x̂t : t ∈ Z+) is positive recurrent with stationary distribution µ =
(µ(x) : x ∈ X).

Function approximation. We approximate the Q-function Q(x)
with a linear approximation,

Q(x;w) = [Φw]x = w>φ(x) =
∑
j∈J

w jφ j(x).

Here, like before, we have taken our state x and extract linearly in-
dependent features, φ j = (φ j(x) : x ∈ X) for j in finite set J. These
features should be important in determining the function Q(x). We
then apply a vector of weights w = (w j : j ∈ J) to each of these
features. Our job is to find weights so that Q(x;w) gives a good
approximation to Q(x). We can intepret the Q-function and approx-
imation as vectors with components in X given by Q = (Q(x) : x ∈ X)
and Qw = Φw where Φ is a matrix whose x-th column is given by
φ(x) = (φ j(x) : j ∈ J). We we can use this to define a stopping policy
given by

τ(w) = min {t : r̄(x) ≥ Q(x;w∗)} .

Since τ(w) does not necessarily induce the sameQ-function as Q(x;w∗).
We will later consider the operation

SwQ(x) := r(x) + βEx[r(x̂)I[r(x) ≥ Φw(x)] + Q(x)I[r(x) < Φw(x)]]

Think of Sw being the value of following stopping rule τ(w) on the
next step and there afterward following Q. If is immediate that

SwΦw = SΦw

254

5.4. LINEAR APPROXIMATION AND STOPPING NSW

As before it is useful to consider the projection onto the space
spanned by the basis functions Φ, namely,

Π(Q) := Φ(Φ>MΦ)−1Φ>MQ = argmin
Qw

||Q −Qw||
2
µ (5.19)

where as before ||Q||2µ =
∑

x∈X µ(x)Q(x)2 and M is the diagonal ma-
trix with diagonal entries given by µ(x) for x ∈ X.
Approximation Algorithm. An approximation algorithm is given
by the update

wt+1 = wt + αtφ(xt)
(
r(xt) + βmax{Q(xt+1;wt), r̄(xt+1)} −Q(xt;wt)

)
(5.20)

here αt is a step size parameter. Notice this is similar the TD(0)
update given in Section 5.3.

If we let

g(w) = φ(xt)
(
r(xt) + βmax{Q(xt+1;wt), r̄(xt+1)} −Q(xt;wt)

)
Then the update (5.20) is simply, wt+1 = wt + αtg(wt).

Average Behavior. If we look at the expected change in g(w) given
xt = x, we get that

Ex[g(w)] = φ(x)

r(x) + β
∑

y

Pxy max
{
φ(y)>w, r̄(y)

}
− φ(x)>w


= φ(x) (SQw(x) −Qw(x))

If we look at the average change this induces under stationary dis-
tribution µ(x) we get

Eµ[g(w)] =
∑

x

φ(x)µ(x) (SQw(x) −Qw(x))

= Φ>MSΦw −Φ>MΦw (5.21)

where we use the definition that Qw = Φw. So the change in the
algorithm is stationary when

0 = Eµ [g (w∗)] = Φ>MSΦw∗ −Φ>MΦw∗

Rearranging and applying Φ to both sides gives

Φw∗ = Φ
(
Φ>MΦ

)−1
Φ>MSΦw∗

= ΠSΦw∗ .

255

5.4. LINEAR APPROXIMATION AND STOPPING NSW

the last part follows by the definition of the projection Π (5.19).

Differential Equation Analysis. The analysis here is essentially
the same as the differential equation analysis in Section 5.3. Again
the change in w(t) is approximated by the ODE

dw(t)
dt

= −A(w(t))

where now

A(w(t)) = Eµ [g(w(t))] = Φ>M(I − S)Φ(w −w∗) .

Note that A is no longer a linear function in w(t). However, similar
to our analysis before – where we argued −(I − βP) was spectrally
negative because P is a 1-contraction in ||·||µ – we can argue that −(I−
S) is spectrally negative because S is a contraction. See Proposition
8a). Thus

dL
dt

= ∇L(w)
dw
dt
≤ −(w −w∗)>A(w −w∗).

This implied L(w(t))→ 0 and from this we can argue that w(t)→ w∗.

Approximation Error. If we let τ(w∗) be the stopping rule induced
by w∗ from the above convergence argument then we can argue that
its reward behaves similarly to projecting the optimal policy:

E [V (x0)] − E
[
Rτ(w∗) (x0)

]
6

2β
(1 − β)2 ‖ΠQ∗ −Q∗‖µ

The argument is similar to the TD(0) case, previously. However, as
discussed the argument is complecated by the fact the Q-factor for
τ(w) is not the same as Q(x;w). The full argument is proven more
formally in (8) below.
Some Formal Analysis. Here we present the main ingredients
applied in this section. (Excluding the differential equation argu-
ment.)

Proposition 8.
a) The maps S, ΠS and Sw are β-contractions with respect to the norm
|| · ||µ, that is

1. ‖SQ − SQ′‖µ 6 β ‖Q −Q′‖µ .

2. ‖ΠSQ −ΠSQ′‖µ 6 β ‖Q −Q′‖µ .

256

5.4. LINEAR APPROXIMATION AND STOPPING NSW

3. ‖SwQ − SwQ′‖µ 6 β ‖Q −Q′‖µ .
b)

(w −w∗)Eµ[g(w)] < 0 ∀w , w∗

and
Eµ [g (w∗)] = 0

where w∗ solves the equation

Π(SΦw∗) = Φw∗

c)
E [V (x0)] − E

[
Rτ(w∗) (x0)

]
6

2β
(1 − β)2 ‖ΠQ∗ −Q∗‖µ

where here it is assumed that the expection is taken with respect to
the stationary distribution of x0, namely µ.
Proof. a) part 1 & 2) Since Π is a projection it is also a contraction.
So

‖ΠSQ −ΠSQ′‖µ 6 ‖SQ − SQ′‖µ .

So it remains to show that S is a contraction, which holds as follows.

||SQ − SQ′||µ ≤ β||P max {r̄,Q} − P max {r̄,Q′} ||µ
≤ β||max {r̄,Q} −max {r̄,Q′} ||µ
≤ β||Q −Q′||µ .

Here we use the fact that ||PR||µ ≤ ||R||µ which we showed in Propo-
sition 7 and a straight-forward calculation that shows that for real
numbers a, b, c we have |max {a, c} −max {b, c} | ≤ |a − b|.
a) part 3) Recall the definition of Sw. We let Fw be the future value
given by

FwQ(x) :=

r̄(x) if r̄(x) ≥ Φw(x),
Q(x) otherwise .

So SwQ = r + βFwQ. Now

||SwQ − SwQ′||µ = β||PFwQ − PFwQ′||µ ≤ β||FwQ − FwQ′||µ ≤ β||Q −Q′||µ

In the first inequality we use that ||P||µ ≤ 1, from Proposition 7, and
the final inequality holds because

||FwQ − FwQ′||2µ =
∑

x

µ(x) |Q(x) −Q′(x)|2 I[r̄(x) < Φw(x)]

≤

∑
x

µ(x) |Q(x) −Q′(x)|2 = ||Q −Q′||µ

257

5.4. LINEAR APPROXIMATION AND STOPPING NSW

b) The following argument relies on the fact that ΠS is a contraction:

(w −w∗)Eµ[g(w)]
= (w −w∗)

[
Φ>MSΦw −Φ>MΦw

]
= (w −w∗) Φ>M[ΠSΦw −Φw]
= (w −w∗) Φ>M [ΠSΦ (w −w∗) −Φw + Φw∗]

= (Φw −Φw∗)>MΠS (Φw −Φw∗) − (Φw −Φw∗)>M (Φw −Φw∗)

6 ‖Φw −Φw∗‖µ ‖ΠSΦw −ΠSΦw∗‖µ − ‖Φw −Φw∗‖2µ

6 −(1 − β)‖Φw −Φw‖2µ

In the first equality, we apply (5.21). In the second equality, we apply
that Φ>M = Φ>M(Π + (I − Π)) = Φ>MΠ. (Note Π is a projection with
respect to µ onto the space spanned by Φ thus I−Π is orthogonal to
this space). The first inequality above applies the Cauchy-Schwartz
Inequality. The second inequality applies that ΠS is a contraction.
c)

βE [V (x0)] − βE
[
Vτ
w∗ (x0)

]
= E

[
r (x0) − βPV (x0)

]
− E

[
r (x0) − βPVτ

w∗ (x0)
]

=
∣∣∣E [

Q (x0) −Qτ
w∗ (x0)

]∣∣∣
≤ ||Q −Qτ

w||µ

The last inequality, above, applies Jensen’s Inequality. Thus

E [V (x0)] − E
[
Vτ
w∗ (x0)

]
6 β−1

∥∥∥Q −Qτ
w∗

∥∥∥
µ

(5.22)

Similar to the argument in Proposition 7 we have∥∥∥Q −Qτ
w∗

∥∥∥
µ

=
∥∥∥Q − S (Φw∗) + Sτ (Φw∗) −Qτ

w∗

∥∥∥
µ

6 ‖SQ − S (Φw∗)‖µ +
∥∥∥Sτ (Φw∗) − Sτ(Qτ

w∗)
∥∥∥
µ

6 β ‖Q −Φw∗‖µ + β
∥∥∥Φw∗ −Qτ

w∗

∥∥∥
µ

6 2β ‖Q −Φw∗‖µ + β
∥∥∥Q −Qτ

w∗

∥∥∥
µ

Here we use that S (Φw∗) = Φw∗ = Sτ (Φw∗) and the contraction prop-
erty for both S and Sτ.

Thus, rearranging the above gives,∥∥∥Q −Qτ
w∗

∥∥∥
µ
6

2β
1 − β

‖Q −Φw∗‖µ

258

5.4. LINEAR APPROXIMATION AND STOPPING NSW

Applying (5.22) to this gives

E [V (x0)] − E
[
Vτ
w∗ (x0)

]
6

2
(1 − β)2 ‖Q − π(Q)‖µ .

�

References
This section is based on reading Tsitsiklis and Van Roy [51], but
also see Bertsekas and Tsitsiklis [7]. Further approaches to optimal
stopping are discussed in the book of Glasserman [19].

259

5.5. CROSS ENTROPY METHOD NSW

5.5 Cross Entropy Method
In the Cross Entropy Method, we wish to estimate the likelihood

l = P(S(X) ≥ γ).

Here X is a random variable whose distribution is known and be-
longs to a parametrized family of densities f (, v). Further S(X) is
often a solution to an optimization problem.

It is assumed that l is a relatively rare event, say of order 10−5.
One way to estimate l is to take N IID samples X1, ...,XN and then
average

l̂ =
1
N

N∑
i=1

I[S(Xi) ≥ γ].

This gives us an unbiased estimate. However, because the event is
rare, we may require a large number of samples N in order to pro-
vide a good estimate of l. Importance sampling is a straightforward
method that can mitigate these effects. Here sample each Xi from
a different density g(·) and perform the estimate

l̂g =
1
N

N∑
i=1

I[S(Xi) ≥ γ]W(x) (5.23)

where W(x) = f(x)/g(x). Such a change can improve the estimation
of l. For instance, the choice g∗(x) = I[S(x) ≥ γ] f (x)/l gives the correct
estimate of l with certainty. Clearly g∗ cannot work in practice; it
requires knowledge of l, the parameter which we are estimating.
Nonetheless a good estimate of g∗ may be possible. The point of the
cross entropy method is to find a reasonable choice for g so that
importance sampling can be applied.

In particular, the cross-entropy method advocates estimating g∗(·)
by f (·; v) according to a parameter choice that minimizes the relative
entropy between g∗ and f (·, v). Namely,

minv D(f (·; v)||g(·)) := −
∫

g(x) log
f (x; v)
g(x)

dx.

With a little rearrangement, we see that this is equivalent to the
optimization

max
v

∫
I[S(x) ≥ γ] f (x; u) log f (x; v)dx.

260

5.5. CROSS ENTROPY METHOD NSW

With importance sampling in mind, we apply a change of measure
to the above integral to get

max
v

∫
I[S(x) ≥ γ] f (x; w)W(x; u, v) log f (x; v)dx

where W(x; u,w) = f (x; u)/ f (x; w). The above optimization may not be
explicitly solvable so we replace it with the (importance sampled)
optimization

max
v

1
N

N∑
i=1

I[S(Xi) ≥ γ]W(Xi; u,w) log f (x; v)dx (5.24)

where Xi are IID samples from density f (·; w).
In many examples the above optimization in concave and solv-

able either by descent methods or by differentiating and solving for
the condition

N∑
i=1

I[S(Xi) ≥ γ]W(Xi; u,w)∇ log f (x; v) = 0.

The reason for incorporating importance sampling into the es-
timate (5.24) is because the event {} could be too unlikely to form
an accurate estimate under the choice w = v. The idea behind the
cross entropy method is to apply a multi-level approach where we
sequentially increase γ and w as follows

• We estimate the ρ-th percentile of S(X) by taking by ordering
the samples S(X1) ≤ S(X2) ≤ ... ≤ S(XN) and calculating the em-
pirical ρ-th percentile, which gives the update

γ′ = Sd(1−ρ)Ne

The event ρ is chosen to be reasonably likely, e.g. ρ = 0.01. Note
that since, in principle, the parameter γ′ is such that less likely
{S(X) ≥ γ′} under v when compared with the previous choice of
γ.

• Given this γ′, we find v′ as the best estimate according to our
cross-entropy rule (5.24). This, in principle, should increase
the likelihood of the event {S(X) ≥ γ′}when compared with prior
choice of v.

261

5.5. CROSS ENTROPY METHOD NSW

• When γ′ passes the required target level γ then the have found
a parameter choice that gives reasonable importance to the
event {S(X) ≥ γ} and we can calculate l with importance sam-
pling rule (5.23).

262

Chapter 6

Reinforcement Learning with
Neural Networks

263

6.1. DEEP Q-NETWORK (DQN) NSW

6.1 Deep Q-Network (DQN)
Deep Q-Network (DQN) is a simple adaptation of Q-learning to neu-
ral networks. Recall that Q-learning performs the update

Q(x, a)← Q(x, a) + α
(
r + max

â
Q(x̂, â) −Q(x, a)

)
,

where the 4-tuple (x, a, r, x̂) consist of the current state, action, re-
ward and next state. When we apply function approximation (with
a neural network) to Q-factor, Qw(x, a) for weights w, we must apply
the appropriate gradient descent update:

w← w + α
(
r + max

â
Qw(x̂, â) −Qw(x, a)

)
∇wQ(x, a) .

Notice this is the natural extension of the TD(0) update under ??.
The application of this algorithm to reinforcement learning has ex-
isted for some time along with its use with Neural Networks. How-
ever, along with progress in deep neural networks there have been
adaptions to this basic scheme that improve stability and perfor-
mance for this basic algorithm. For DQN, these are the use of fixed
targets and experience replay.

Fixed Targets. The basic idea of fixed Q-targets is you fix the
weights w′ and then continue to update a copy of the weights w.
Specifically this leads to the update:

w← w + α
(
r + max

â
Qw′(x̂, â) −Qw(x, a)

)
∇wQ(x, a) .

After some period of time you reset w′ = w and then continue to
update w and stays w′ fixed at its new value until it is next reset.
It’s not a big change; notice the apostrophe now in the Q-factor that
we maximize. But it helps. Here are two reasons why.

1. Notice the above step corresponds to a stochastic gradient de-
scent step on the objective

E
[(

r + max
â

Qw′(x̂, â) −Qw(x, a)
)2]

Here, in the context of supervised learning, Qw(x, a) is the pre-
diction for the output given input (x, a) and r + maxâ Qw′(x̂, â) is

264

6.1. DEEP Q-NETWORK (DQN) NSW

the output. In supervised learning the output is fixed in distri-
bution given the input. If the parameter w′ was not fixed, but
was equal to w, then each step would alter the output at each
step some non-trivial way. By fixing Q-targets, we can treat
the reinforcement learning problem as a supervised learning
problem until the next reset of w′. This simplifies the problem
of fitting Qw(x, a) as standard supervised learning approaches
can be to get a good fit.

2. At the point w′ is updated, it holds that

Qw(x, a) ≈ r + max
â

Qw′(x̂, â) .

Thus when we update w′, we are in essence performing a policy
iteration update.

In summaary, fixing Q-targets separates out the problem into a su-
pervised learning task where we update w and a policy improvement
step where we update w′. In this regard it is a very neat idea.

Experience Replay. Experience replay is the idea that we store a
large number (several episodes worth) of (x, a, r, x̂) in memory and
then we sample from this memory, e.g. at random, and use this
to do a weight update. At every simulation step we add the newest
experience (x, a, r, x̂) to the replay memory and remove the oldest.

Q-learning which works off-line does not really mind what or-
der data is received. However, stochastic gradient descent tends to
work much better if there is not a high degree of correlation between
steps. Specifically if we send data (x̂t, at, rt, x̂t+1) in the same order
that it is received from the simulator, then updates might cause
the weights to wander off. (They will come back but essentially we
have added variance to an already noisy process.)

Additional Variations.

Prioritized Experience Replay. The idea here is to rank the 4-
tuples (x, a, r, x̂) in the replay memory. This is done by recording the
absolute value of the TD error of each (x, a, r, x̂) in memory and then
forming a ranking from highest to lowest. Recall the TD error is
given by

δ = r + βmax
â

Qw′(x̂, â) −Qw(x, a)

265

6.1. DEEP Q-NETWORK (DQN) NSW

There are two basic variants: first, you select the highest ranked
error in memory; second, you select n-th highest ranked according
to a probability:

Pn =
n−α∑M

m=1 m−α

Here is a parameter α = 0 corresponds to uniform sampling and
α = ∞ corresponds to highest ranked. In either case you need to
importance sample as we know that an unbiased gradient update
is the same as uniformly sampling. So the basic Q-learning step
becomes:

w← w + α
(1
NPn

)β
δ∇wQ(x, a) .

The parameter β introduces bias, Note if β = 1 then this is the correct
importance sampling, however, it could be argued that earlier in
training you want to care more about the gradient updates for TDs
with large (and probably previously unseen) experience. So taking
β ≈ 0 initially and linearly increasing to β = 1 is recommended.
You can also throw caution to the wind and set β = 0, as training
with ultimately be most effected by large TD errors and by biasing
towards these you are attempting to deal with these errors as best
as possible.

266

Appendix A

Appendix

A.1 Probability.
All results here can be found in Williams [57], except the Martingale
Central Limit Theorem. Here instead see Hall and Heyde [22] and,
for the Functional Martingale Central Limit Theorem, seeWhitt [55].

Probability Inequalities
Below, unless stated otherwise, An, n = 1, 2, .. are an events. X is
a RV with mean µ, variance σ2 and moment generating function
MX(θ) := E[expθX]. Sn =

∑n
k=1 Xk, where Xk are IID instances with

mean µk and variance σ2
k.

P

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

P(An) (Union bound)

P(X ≥ x) ≤
µ

x
for X ≥ 0 (Markov’s inequality)

P(|X − µ| ≥ x) ≤
σ2

x2 (Chebychev inequality)

P(X ≥ x) ≤ exp
{
−max

θ≥0

(
θx − log MX(θ)

)}
(Chernoff Bound.)

P(Sn − µn ≥ x) ≤ exp
{
−

x2

2
∑n

i=1 c2
i

}
if |Xi| ≤ ci (Hoeffding’s Ineq.)

P(Sn − µn ≥ x) ≤ exp
{
−

x2

x + 2
∑n

i=1 σ
2
i

}
(Bernstein’s Ineq.)

267

A.1. PROBABILITY. NSW

Heoffding is a better tail bound than Bernstein, but Bernstein’s In-
equality is better when

∑n
i=1 σi = o(

∑n
i=1 ci), here take x =

∑n
i=1 σi in

Bernstein’s bound.

X > 0 =⇒ E[X] > 0 (Positivity)
f (E[X]) ≤ E[f (X)] for f convex (Jensen’s Inequality)
||X||p ≤ ||X||q for p ≤ q (Minkowski’s Inequality)
E[XY] ≤ ||X||2||Y||2 (Cauchy-Schwartz)

E[XY] ≤ ||X||p||Y||q for
1
p

+
1
q

= 1 (Holder’s Inequality)

Probability Limits
Here we assume A1,A2, ... is a sequence of events.

P(An occurs infinitely often) = 0 if
∑

n

P(An) < ∞

(Borel Cantelli Lemma)

P(An occurs infinitely often) = 1 if
∑

n

P(An) = ∞

and An, n ∈N, are independent
(2nd Borel Cantelli Lemma)

Here we assume that X1,X2, ... is a sequence of random variables
(possibly not independent)

E[Xn]↗ E[X∞], for Xn ≤ Xn+1 .

(Monotone Convergence Theorem)

E
[
lim inf

n→∞
Xn

]
≤ lim inf

n→∞
E[Xn], for Xn ≥ 0. (Fatou’s Lemma)

E[Xn]→ E[X∞] for |Xn| ≤ Y with EY < ∞
(Bounded Convergence Theorem)

Conditional Expectation
In what follows, we assume that X and Y are random variables
which need not by real valued, e.g. X = (X1,X2, ...,Xn) or Y = (Yt :
t ∈ Z+), and Z is a real valued random variable.

268

A.1. PROBABILITY. NSW

Formally the conditional expecation should be defined in terms
of sigma-fields. People seem to get scared of these, so we phrase
these properties in terms of (vectors of) random variables and func-
tions of these random variables.

E[Z|X] := g(X) such that

E[g(X) f (X)] = E[Z f (X)] for all f (Def. E[Z|X])

Eg. take g(x) = E[Z|X = x].

E[E[Z|X] f (X)] = E[Z f (X)]
E[Z1Z2|X] = Z1E[Z2|X] if Z1 = f (X) (Taking out what is known)
E[E[Z|X]|Y] = E[Z|Y] if Y = f (X) (Tower Property)
E[Z|X] = E[Z] if Z, X are independent
E[Z|X,Y] = E[Z|X] if Y is independent of X and Z.

(Role of independence)
E[g(X,Y)|X = x] = E[g(x,Y)] if X and Y are independent.

Martingales and Stopping
We condition with respect to a sequence of random variables, in
particular we let Fn = (X1, ...,Xn) (note Fn is a function of Fn+1 so the
Tower Property of the conditional expecation applies).

Suppose Mn is a sequence of RVs such that Mn is a function of Fn

and |Mn| has finite expectation then we say Mn is a Martingale if

E[Mn|Fn−1] = Mn−1 (Martingale Property)

Also for supermartingales and submartingales

E[Mn|Fn−1] ≤Mn−1 (Supermartingale Property)
E[Mn|Fn−1] ≥Mn−1 (Submartingale Property)

(note b in ’sub’ points up and the p in ’super’ points down in the
same direction of the process.) We abbreviate ’Martingale’ to ’Mg’.

• If Mt is a super-Mg with suptE[|Mt|] < ∞ or Mt ≥ 0 then the limit :

M∞ := lim
n→∞

Mn exists (Doob’s Mg Convergence Thrm)

269

A.1. PROBABILITY. NSW

• If Mt is a positive sub-martingale then

P
(

sup
n≤t

Mn ≥ x
)
≤
E[Mt]

x
(Doob’s Sub-Mg Inequality)

(This is like Markov’s Inequality)
• If Mt is a Mg and f is convex (with E[| f (Mt)|] < ∞) then f (Mt)
is a submartingale.
• Suppose M is a Mg and has increments bounded by c then

P
(

sup
n≤t

Mn ≥ x
)
≤ exp

{
−

x2

2tc

}
. (Azuma-Hoeffding)

• If Yt is an adapted process (meaning Yt is a function of Ft for all t)
then there exists Zt a previsible process (meaning Zt is a function
of Ft−1 for all t) and Martingale Mt such that

Yt = Y0 + Mt + Zt (Doob-Meyer Decomposition)

moreover this decomposition is unique, with probability 1. More-
over, is Xt is a sub-Mg then Zt is increasing. Moreover, for any Mg
Mt with EM2

t < ∞
M2

t − 〈M〉t is a Mg for .

where 〈M〉t :=
∑t

n=1E[(Mn −Mn−1)2
|Fn−1].

• If M′

t is a positive sub-martingale then, for p > 1 and p−1 + q−1 = 1∥∥∥∥ sup
t

M′

t

∥∥∥∥
p
≤ q sup

t
||M′

t||p = q||M′

∞
||p (Doob’s Lp inequality)

• If Mt is a super-Mg with suptE[|Mt|
p] < ∞ then the limit :

Mt →M∞, w.p. 1 and in Lp (Doob’s Lp Mg Convergence Thrm)

• For Mt a Mg with EM2
t < ∞, ∀t

Mt

〈M〉t
→ 0 on the event {〈M〉∞ = ∞} (Strong Law for Martingales)

Mt →M∞ on the event {〈M〉∞ < ∞}

where 〈M〉t :=
∑t

n=1E[(Mn − Mn−1)2
|Fn−1]. In other words, for any L2

Martingale

Mt = o(〈M〉t) + O(1).

270

A.1. PROBABILITY. NSW

• Assume Mt is a Mg with bounded increments1

Mt
√
〈M〉t

⇒N(0, 1) (Mg CLT)

• Assume Mt is a Mg with bounded increments(
Mnt
√
〈M〉nt

: t ∈ [0, 1]
)
⇒ (Bt : t ∈ [0, 1]) (Mg CLT - v1)

where (Bt : t ∈ (0, 1)) is a standard Brownian motion. Or, let Mn
t be a

Martingale for each n and suppose (〈Mn
〉t : t ∈ [0, 1]) ⇒ (t : t ∈ [0, 1])

then (
Mn

t
√
〈Mn〉t

: t ∈ [0, 1]
)
⇒ (Bt : t ∈ [0, 1]) (Mg CLT - v2)

Random variable T is a stopping time for Ft, t ≥ 0 if I[T ≤ t] is a
function of Ft, i.e. knowing the values of (X1, ...,Xt) is sufficient to
know if T has happened yet or not.

1This condition can be weakened.

271

A.2. STOCHASTIC INTEGRATION NSW

A.2 Stochastic Integration

• A heuristic look at the stochastic integral.

• heuristic derivation of Itô’s formula.

What follows is a heuristic proof of Itô’s Formula. (Rigorous
proofs of the exercises are not expected.)

Ex 161 (A Heuristic look at Stochastic Integration). For (Bt : t ≥ 0) a
standard Brownian motion argue that, for all T and for δ sufficiently
small and positive,∑

t∈{0,δ,..,T}

(Bt+δ − Bt) = BT and
∑

t∈{0,δ,..,T}

(Bt+δ − Bt)
2
≈ T

Ans 161. The 1st sum is an interpolating sum. By independent incre-
ments property of Brownian motion, the 2nd sum adds IIDRVs with
each with mean δ. Thus the strong law of large numbers gives the
approximation.

Ex 162 (Continued). Discuss why it is reasonable to expect that∑
t∈{0,δ,..,T}

σ(Xt) (Bt+δ − Bt) ≈
∫ T

0
σ(Xt)dBt

and ∑
t∈{0,δ,..,T}

µ(Xt) (Bt+δ − Bt)
2
≈

∫ T

0
µ(Xt)dt.

Ans 162. The first sum is approximation from a Riemann-Stieltjes
integral, i.e. ∫ T

0
f (t)dg(t) ≈

∑
t∈{0,δ,..,T}

f (t)(g(t + δ) − g(t)).

So one might expect a integral limit. (This is unrigorous because
Riemann-Stieltjes Integration only applies to functionswith finite vari-
ation – while Brownian motion does not have finite variation.)

The second sum is a Riemann integral upon using the approxima-
tion (Bt+δ − Bt)

2
≈ δ [161].

272

A.3. GRONWALL’S LEMMA NSW

Ex 163 (Continued). If we inductively define Xt by the recursion

Xt+δ − Xt = σ(Xt)(Bt+δ − Bt) + µ(Xt)δ, t = 0, δ, 2δ,

then discuss why we expect Xt to approximately obey an equation of
the form

Xt = X0 +

∫ T

0
σ(Xt)dBt +

∫ T

0
µ(Xt)dt.

Ans 163. Sum to gain XT −X0 and apply approximations from [162].

Ex 164 (Continued). Let f be a twice differentiable function, argue
that

f (Xt+δ) − f (Xt) ≈
[

f ′(Xt)µ(Xt) +
σ(Xt)2

2
f ′′(Xt)

]
δ + f ′(Xt)σ(Xt) (Bt+δ − Bt) .

Ans 164. Apply a Taylor approximation

f (Xt+δ) − f (Xt)
= f (Xt + σ(Xt)(Bt+δ − Bt) + µ(Xt)δ) − f (Xt)

= f ′(Xt)
{
µδ + σ · (Bt+δ − Bt)

}
+

f ′′(Xt)
2

{
µδ + σ · (Bt+δ − Bt)

}2
+ o(δ)

= f ′(Xt)
{
µδ + σ · (Bt+δ − Bt)

}
+

f ′′(Xt)
2

σ2
· (Bt+δ − Bt)2 + o(δ)

In the last equality we use that (Bt+δ − Bt) = o(δ1/2), cf. [161].

Ex 165 (Continued). Argue that

f (XT) − f (X0) =

∫ T

0

[
f ′(Xt)µ(Xt) +

σ(Xt)2

2
f ′′(Xt)

]
dt +

∫ T

0
f ′(Xt)σ(Xt)dBt.

This is Itô’s formula.

Ans 165. Apply an interpolating sum to [164] and then apply [162].

A.3 Gronwall’s Lemma
We introduce a useful integration inequality due to Bellman.

273

A.3. GRONWALL’S LEMMA NSW

Thrm 166 (Gronwall’s Lemma). If f : R+ → R+ is bounded above on
each closed interval [0,T] and satisfies

f (T) ≤ a(T) +

∫ T

0
b(t) f (t)dt (A.1)

for increasing function a(t) and positive (integrable) function b(t) then

f (T) ≤ a(T) exp
{∫ T

0
b(t)dt

}
• The most common choices of a and b are constants.

Proof. Consider the function

v(t) = e−
∫ t

0 b(s)ds
∫ t

0
b(s) f (s)ds,

differentiating and applying (A.1) gives

dv(t)
dt

= −b(t)e−
∫ t

0 b(s)ds
∫ t

0
b(s) f (s)ds + b(t) f (t)e−

∫ t
0 b(s)ds

≤ −b(t)e−
∫ t

0 b(s)ds
∫ t

0
b(s) f (s)ds + a(t)b(t)e−

∫ t
0 b(s)ds

+ b(t)e−
∫ t

0 b(s)ds
∫ t

0
b(s) f (s)ds

= a(t)b(t)e−
∫ t

0 b(s)ds.

Integrating and recalling that a(t) is increasing gives

e−
∫ T

0 b(t)dt
∫ T

0
b(t) f (t)dt = v(T) ≤

∫ T

0
a(t)b(t)e−

∫ t
0 b(s)dsdt

≤ a(T)
∫ T

0
b(t)e−

∫ t
0 b(s)dsdt

= a(T)
[
1 − e−

∫ T
0 b(s)ds

]
Thus, applying (A.1) and the above bound

f (T) ≤ a(T) +

∫ T

0
b(t) f (t)dt ≤ a(T) + e

∫ T
0 b(t)dta(T)

[
1 − e−

∫ t
0 b(s)ds

]
= a(T) exp

{∫ T

0
b(t)dt

}
.

�

274

A.4. PROJECTIONS NSW

A.4 Projections
we consider the projection of x ∈ Rp on to closed convex set X:

PX(x) = argmin
y∈X

||x − y||2

Here || · || is a norm with a dot product. The key observation is that
making a projection cannot increase distances

Lemma 25.
||PX(x) − PX(y)|| ≤ ||x − y||

Proof. For all x′ ∈ X, we must have (x′ −PX(x)) · (x−PX(x)) ≤ 0, i.e. the
plane H = {z : (z − PX(x)) · (x − PX(x)) = 0} separates x from X. If this
were not true, then we would have a contradiction, in particular,
there would be a point on the line joining x′ and PX(x) that is closer
to x. We thus have

(PX(y) − PX(x)) · (x − PX(x)) ≤ 0 and (PX(x) − PX(y)) · (y − PX(y)) ≤ 0.

Adding together and then applying Cauchy-Schwartz implies

||PX(y) − PX(x))||2 ≤ (y − x) · (PX(y) − PX(x)) ≤ ||y − x|| ||PX(y) − PX(x))||,

as required. �

A.5 Misc Results
Lemma 26. If we let αt = t−γ, for γ ∈ [0, 1], we have

t1−γ
− 1

1 − γ
≤

t∑
s=1

s−γ ≤ 1 +
t1−γ
− 1

1 − γ
.

Proof. This can be obtained by simple calculations. Since s−γ is de-
creasing for γ ∈ [0, 1], then

t∑
s=1

s−γ ≤ 1 +

∫ t

1
s−γds = 1 +

t1−γ
− 1

1 − γ
,

and
t∑

s=1

s−γ ≥
∫ t

1
s−γds =

t1−γ
− 1

1 − γ
.

�

275

A.6. UTILITY THEORY NSW

A.6 Utility Theory

• Utility functions; equivalence of utility functions

• Relative risk aversion; CRRA Utility and iso-elasticity.

A utility function U(x) is used to quantify the value that you gain
from an outcome x.

Def 167 (Utility Function). For X ⊂ Rd, a utility function is a function
U : X → R that is increasing, i.e. if x ≤ y component-wise then
U(x) ≤ U(y). The utility of a random variable X is then its expected
utility, EU(X). A utility function creates an orderingwhere an outcome
X is preferred to Y if EU(X) ≥ EU(Y).

Jensen’s inequality applies to a concave utility:

EU(X) ≤ U(EX)

So we prefer a certain outcome EX rather than the risky outcome
X that has the same mean – This is being risk averse.

Def 168 (Risk Aversion). If the function is concave then we also say
that the function is risk averse. (Unless stated otherwise we assume
that the utility function is risk averse).

Def 169. We say that two utility functions U and V are equivalent if
they induce the same ordering. I.e. EU(X) ≤ EU(Y) iff EV(X) ≤ EV(Y).

Ex 170. Show that two utility functions are equivalent iff V the same
as U up-to an affine transform, i.e.

V(x) = aU(x) + b

for constants a > 0 and b.

Ans 170. Define φ : R → R s.t. φ(EU(X)) = EV(X). Let X = x w.p.
and X = y w.p. q = 1 − p. Then

φ(pU(x) + qU(y)) = pV(x) + qV(y) = pφ(U(x)) + (1 − p)φ(U(y)).

This implies φ is linear.

276

A.6. UTILITY THEORY NSW

Def 171 (Coefficient of Relative Risk Aversion). For a utility func-
tion U : R → R (twice differentiable) the Coefficient of Relative Risk
Aversion is

−x
U′′(x)
U′(x)

.

Ex 172. You have utility function U. You are offered a bet that in-
creases you wealth w multiplicatively by (1 + X) here X is a “small"
positive is a RV. Discuss why you would accept the bet iff

2EX
EX2 ≥ −x

U′′(x)
U′(x)

I.e. You accept the bet if you mean is large but a large variance makes
this less likely, and the coefficient of relative risk aversion decides the
threshold.

Ans 172. Accept if

0 ≤ E[U(w(1 + X)) −U(w)]
Taylor
≈ E

[
U′(w)wX +

1
2

U′′(w)w2X2
]
.

Def 173 (CRRA Utility/Iso-elastic Utility). A Constant Relative Risk
Averse utility (CRRA) takes the form

U(x) =

x1−R

1−R , R , 1,
log x, R = 1.

Def 174. A utility function is Iso-elastic if it is unchanged under mul-
tiplication: for all c > 0,

EU(X) ≥ EU(Y) iff EU(cX) ≥ EU(cY).

I.e. the utility only cares about the relative magnitude of the risk.

Ex 175. Show that a utility function is iso-elastic iff it is a CRRA
utility (up-to an affine transform).

Ans 175. By [170], its immediate that CRRA implies isolastic. Fur-
ther by [170], ∀c, U(cx) = acU(x) + bc for constants ac and bc. Differen-
tiate twice w.r.t. x and divide gives

cU′′(cx)
U′(cx)

=
U′′(x)
U′(x)

Set x = 1 and integrate twice w.r.t. c gives the required result.

277

A.7. LAGRANGIAN OPTIMIZATION AND DUALITY NSW

A.7 Lagrangian Optimization and Duality
We are interested in solving the constrained optimization problem

minimize f (x) subject to h(x) = b over x ∈ X. (P)

The variables x must belong to the constraint region X, where X is
a subset of Rp. The variables must satisfy the functional constraints
h(x) = b, where h : X → Rd and b ∈ Rd. Variables that belong to the
constraint region and satisfy the functional constraints are called
feasible and belong to the feasible set

X(b) = {x ∈ X : h(x) = b}.

The variables are judged according to the relative magnitude of the
objective function f : X → R. A feasible solution to the optimization,
x∗, is called optimal when f (x∗) ≤ f (x) for all x ∈ X(b). In general, an
optimum x∗ need not exist. Inequality constraints h j(x) ≤ b j can be
rewritten as equality constraints h j(x) + z j = b j, where z j ≥ 0. Then
an optimization of the form (P) can be solved over variables (x, z) ∈
X × R

p′
+ . The variables z are called slack variables. maxx∈X(b) f (x) =

−minx∈X(b) − f (x), so maximizing is the same as minimizing.
The set X could incorporate the functional constraints {x : h(x) =

b}, but generally we assume X is a set where the unconstrained
optimization, minx∈X f (x), is easier to solve. For example, X might
be Rp

+ and minx∈X f (x) might be solved by differentiating and finding
local minima. What makes the problem difficult is the functional
constraints. To get some solution, we might penalize going over
these constraints. If so, we could remove these constraints and
solve a different optimization

minimize f (x) +

d∑
j=1

λ j(b j − h j(x)) over x ∈ X. (Lλ)

In the above optimization, the objective function

L(x;λ) = f (x) + λT(b − h(x))

is called the Lagrangian of the optimization problem (P). We call
the components of the vector, λ ∈ Rd, Lagrange multipliers. We use
x∗(λ) to notate its optimum of (Lλ), if it exists. For each inequality
constraint h j(x) ≤ b j, a variable z j ≥ 0 is added and the term λ j(b j −

278

A.7. LAGRANGIAN OPTIMIZATION AND DUALITY NSW

h j(x)) is replaced by λ j(b j − z j − h j(x)). Because we introduced a new
term −λ jz j, for a finite solution to (Lλ), we require λ j ≤ 0 and thus,
after minimizing over z j, we have z∗jλ j = 0. This equality is called
complementary slackness. If (x∗, z∗) our optimal Lagrangian solution
is also feasible then complementary slackness states λ j(b j − h j(x∗)) =
0.

The unconstrained optimization (Lλ) is, in principle, much easier
to solve and a good choice of λ can be used to penalize constraints
that are not satisfied. For example, if we solve the optimization
problem (Lλ) with optimum x∗(λ) and found that bi > h(xi) then, in-
tuitively, we would make λi bigger in order to make the price of
overrunning constraint i higher. Hopefully, this would then make
the solution of (Lλ) closer to (P). The minimum of the Lagrangian is
always smaller.

Lemma 27 (Weak Duality). For all λ ∈ Rd

min
x∈X

L(x;λ) ≤ min
x∈X(b)

f (x) (A.2)

Proof.

min
x∈X

L(x;λ) ≤ min
x∈X(b)

L(x;λ) = min
x∈X(b)

[
f (x) + λT (b − h(x))︸ ︷︷ ︸

=0

]
= min

x∈X(b)
f (x).

�

In fact, if we can make the two solutions equal then we have opti-
mality.

Theorem 28 (Lagrangian Sufficiency Theorem). If there exists La-
grange multipliers λ∗ and a solution x∗(λ∗) to (Lλ∗) such that x∗(λ∗) is
feasible for (P) then x∗(λ∗) solves the optimization problem (P).

Proof. As x∗(λ∗) is feasible then certainly f (x∗(λ∗)) ≥ minx∈X(b) f (x). Now,

f (x∗(λ∗)) = f (x∗(λ∗)) + λ∗T(b − h(x∗(λ∗))) (as x∗(λ∗) is feasible)
= min

x∈X
L(x;λ∗) (as x∗ is optimal for (Lλ∗))

≤ min
x∈X(b)

f (x). (by (A.2))

So, f (x∗(λ∗)) = minx∈X(b) f (x). �

This result gives a simple procedure to solve an optimization:

279

A.7. LAGRANGIAN OPTIMIZATION AND DUALITY NSW

1. Take your optimization (P) and, if necessary, add slack vari-
ables to make all inequality constraints equalities.

2. Write out the Lagrangian and solve optimization (Lλ) for x∗(λ).

3. By solving the constraints h(x∗(λ)) = b over λ, find a λ∗ so that
x∗ = x∗(λ∗) is feasible.
By Lagrangian Sufficiency Theorem, x∗ is optimal.

Duality
Since weak duality holds, we want λ to make the minimized La-
grangian as big as possible. Only then can a feasible Lagrangian
optimum be found to solve the optimization (P). Thus we consider
the following optimization,

maximize g(λ) over λ ∈ Λ. (D)

Here g(λ) = infx∈X L(x;λ) and Λ = {λ : infx∈X L(x;λ) > −∞}.
We call this optimization problem (D) the dual optimization and,

in turn, we call (P) the primal optimization. Making dependence on
b explicit, use ρ(b) to denote the optimal value of the primal problem
and δ(b) to denote the optimal value of the dual. By weak duality
δ(b) ≤ ρ(b). If δ(b) = ρ(b) then we say strong duality holds. Observe,
maxλ L(x;λ) = f (x), if h(x) = b and maxλ L(x;λ) = ∞, otherwise. So,
ρ(b) = minx∈Xmaxλ L(x;λ) and by definition δ(b) = maxλ minx∈X L(x;λ).
So strong duality corresponds exactly to the saddle point condition
that

min
x∈X

max
λ

L(x;λ) = max
λ

min
x∈X

L(x;λ) (A.3)

Essentially, the Lagrangian approach will only be effective when
we can find a λ∗ such that ρ(b) = infx∈X L(x;λ∗). This is equivalent to
the existence of a supporting hyperplane for ρ(b).

Theorem 29. ρ(b) = infx∈X L(x;λ∗) iff λ∗ and ρ, together satisfy the
property

ρ(c) ≥ ρ(b) + λ∗T(c − b), for all c ∈ Rd. (A.4)

Proof.

inf
x∈X

L(x, λ) = inf
x∈X

{
f (x) + λT(b − h(x))

}
= inf

c∈Rd
inf

x∈X(c)

{
f (x) + λT(b − h(x))

}
= inf

c∈Rd

{
ρ(c) + λT(b − c)

}
.

280

A.7. LAGRANGIAN OPTIMIZATION AND DUALITY NSW

So ρ(b) = infx∈X L(x;λ∗) iff ρ(b) = infc∈Rd

{
ρ(c) + λ∗T(b − c)

}
iff ρ(b) ≤ ρ(c) +

λ∗T(b − c) for all c, as required. �

Informally, (A.4) states that there exists a tangent to ρ at point b
and that the function ρ lies above this tangent. The set H = {(c, ρ(b)+
λ∗T(c − b)) ∈ Rp+1 : c ∈ Rd

} defines a hyperplane containing (b, ρ(b))
and {(c, ρ(c) : c ∈ Rd

} lies in the half-space above H. So we call this
“tangent” H a supporting hyperplane to ρ(b) at b with slope λ∗. Any
function ρ : Rd

→ (−∞,∞] is convex if qρ(b) + (1 − q)ρ(c) ≥ ρ(qb + (1 −
q)c), for q ∈ [0, 1]. It can be verified that this is equivalent to the
condition (A.4). Optimization of convex functions may be possible
with Lagrangian methods.

Given (A.4), for h > 0, we can say that

ρ(b + hei) − ρ(b)
h

≥ λ∗i ,
ρ(b − hei) − ρ(b)

h
≤ λ∗i .

Thus, if ρ is differentiable at b then

∂ρ

∂bi
(b) = λ∗i . (A.5)

For a maximization problem, if we interpreted ρ(b) as the optimal
profit (or cost for a minimization problem) made when manufactur-
ing using b units of raw material then (A.5) can be interpreted as
the change in profit made from gaining a small additional quantity
of material i and thus λ∗i is interpreted at the price the manufac-
turer is prepared to pay to secure those extra goods. From this
interpretation, we call the optimal Lagrange multiplier λ∗i a shadow
price.

As noted above if ρ(b) is convex then we can find a λ∗ with which
we can apply the Lagrangian approach. For a constrained optimiza-
tion problem we say Slater’s Condition is satisfied if the objective
function f is a convex function, if constraint region X is a convex
set, if for each equality constraint h j(x) = b j the function h j is lin-
ear, if there exist a feasible solution x ∈ X(b) such that all inequality
constraint are satisfied with strict inequality h j(x) < b j. To make life
easier we assume the functions f and h j are continuous at the fea-
sible x assumed in slater’s condition and we assume there exists
some non-optimal feasible solution in X(b).

Theorem 30. If Slater’s Condition holds then ρ(b) is a convex function
and thus there exists λ∗ such that ρ(b) = infx∈X L(x;λ∗).

281

A.8. LINEAR ALGEBRA NSW

The proof of Strong Duality following from Slater’s condition is
not too hard, if follows from the supporting hyperplane theorem and
a few inequalities. The proof is secondary to our immediate goals
so we end our discussion at this point.

A.8 Linear Algebra
We review without proof various algebraic facts about vectors and
matrices.

Linear Dependence
Def 176 (Linear Dependent). Vectors v1, ...,vr ∈ Rn are linearly inde-
pendent if

r∑
i=1

aivi = 0 =⇒ ai = 0 ∀i

otherwise the vectors are said to be linearly dependent.

Def 177 (Rank). If A ∈ Rm×n then the number of (row) vectors in A
that are linearly independent is the rank of A, and we write rank(A).

Lemma 28. rank(A) = rank(A>) i.e. the rank of the rows equals the
rank of the columns.

Eigenvalues and Eigenvectors
Def 178 (Eigenvalue and Eigenvector). A vector v ∈ Rn and a scalar
λ ∈ R are, respectively, an eigenvector and an eigenvalue of a matrix
A ∈ Rn×n if

Av = λv .

Lemma 29. If the eigenvectors of the matrix A are linearly dependent
then

A = VΛV−1

where V is the matrix whose columns are give be the eigenvectors
of A and Λ is the diagonal matrix whose diagonal entries are the
eigenvalues of A.

282

A.8. LINEAR ALGEBRA NSW

The converse of the above results holds too. Further if linear
independence does not hold, we can decompose but Λ is no longer
diagonal: it is in Jordan normal form.

Positive Definite Matrices
We are interested in matrices A where x>Ax behaves like a distance.

Def 179 (Symmetric). A matrix A ∈ Rn×n is symmetric if A> = A.

Def 180 (Positive Definite). A matrix is positive definite if

v>Av > 0, ∀v ∈ Rn
\{0}

and the matrix is positive semi-definate if v>Av ≥ 0 ∀v ∈ Rn
\{0}.

Def 181 (Orthogonal). A matrix A ∈ Rn×n is orthogonal if

A>A = In

(Here, and here after, In is the n-dimensional identity matrix.)

Theorem 31 (The Spectral Theorem). If A is a positive definate ma-
trix then A has positive eigenvalues

0 < λn(A) ≤ ... ≤ λn(A)

and V the matrix of eigenvectors is orthogonal.

The same result applies to positive semi-definate matrices; how-
ever the equality 0 = λn(A). Above, and hereafter, we will let λn(A) ≥
... ≥ λ1(A) be the ordered set of eigenvalues.

Corollary 3. If A is positive definite then

A =

n∑
k=1

λkv
>

k vk

(where λk and vk are the kth eigenvalue-eigenvector.)

Lemma 30. If A is positive definite then

< x,y >A= x>Ay

defines an inner product and ||x|| =< x,x >1/2
A .

283

A.8. LINEAR ALGEBRA NSW

Def 182 (Operator norm). For any norm || · || on Rn the operator norm
of matrix A ∈ Rn×n is

||A|| := max
x:||x||=1

||Ax||
||x||

= max
x:||x||>0

||Ax||
||x||

Proposition 9. If A is a positice semi-definite matrix then

||A|| = max
x:||x||=1

||Ax||
||x||

= λmax(A) and min
x:||x||=1

||Ax||
||x||

= λmin(A)

(where λmin(A) and λmax(A) are the minimum and maximum eigenval-
ues of A.)

By restricting themaximization andminimization above to a smaller
dimension we can attain the other eigenvalues λk. This is called the
Courant-Fischer Minimax Theorem.

The following is a consequence of the above proposition

Corollary 4. • For two positive semi-definite matrices

λmax(A + B) ≤ λmax(A) + λmax(B)
λmin(A + B) ≥ λmin(A) + λmin(B)

• A 7→ λmax(A) is convex and A 7→ λmin(A) is concave.

The above can be generalized to intermediate eigenvalues. These
are Cauchy’s interlacing inequalities. Other related inequalities are
Weyl inequalities and Ky Fan inequalities.

The following is a well-known eigenvalue bound.

Lemma 31. Let A,B be symmetric positive definite matrices of size
d × d. Then,

λmin (A) ≥ λmin (B) − ||A − B|| .

Proof. Recall that
λmin (A) = min

x:‖x‖=1
x>Ax.

We can write

x>Ax = x>(A − B)x + x>Bx .

For the first term, by Cauchy-Schwartz inequality we have

−x>(A − B)x ≤ |〈x, (A − B)x〉| ≤ ‖x‖‖(A − B)x‖ ≤ ‖A − B‖ .

284

A.8. LINEAR ALGEBRA NSW

For the second term, we know

x>Bx ≥ λmin(B) .

Then we have

x>Ax = x>(A − B)x + x>Bx ≥ −‖A − B‖ + λmin(B) .

Therefore,
λmin(A) ≥ λmin(B) − ‖A − B‖ .

We obtain the result. �

The Trace of a Matrix
Def 183 (Trace). The trace of A ∈ Rm×n is the sum of its diagonal
entries

Tr(A) =
∑

i

Aii

Here is a collection of facts about the trace of a matrix.

Proposition 10.

Tr(cA + dB) = cTr(A) + dTr(B) (Linear)
Tr(AB) = Tr(BA) , Tr(A)Tr(B) (Commutative)

Tr(A) = Tr(A>) (Symmetric)
Tr(V−1AV) = Tr(A) (Invariant)

Tr(PX) = rank(X), for P = X(X>X)X> (Projection)

Tr(A) =
∑

i

λi(A) (Eigenvalues)

There is a generalization for the eigenvalue sum result. Here in
this extremal trace result you sum the first (or last) k eigenvalues.

The Determinant of a Matrix
The determinant of a matrix gives its volume:

285

A.8. LINEAR ALGEBRA NSW

Def 184 (Determinant). The determinant of a matrix A = [a1, ...,an]
with column vectors given by ai ∈ R1×n gives gives the volume of the
polytope defined by the column vectors of A.2 We use det(A) to denote
its determinant. The determinant det(A) is the unique function such
that

1. det(αa + βb,a2, ...,an) = αdet(a,a2, ...,an) + βdet(b,a2, ...,an), for
α, β ∈ R.

2. det(a1, ...,ai, ...,a j, ...,an) = −det(a1, ...,a j, ...,ai, ...,an) ∀i, j.

3. det(In) = 1.

Here are a few equalities for the determinant

Proposition 11.

• det(AB) = det(A) det(B)

• det(A>) = det(A)

• det(A−1) = det(A)−1

• det(In + AB) = det(Im + BA) (Sylvester’s Determinant Theorem)

• det(A) =
∏n

i=1 λi(A)

• det(A + u>v) = (1 + v>A−1u) det(A) (Matrix Determinant Lemma)

Thematrix Determinant lemmaworks well with the Sherman-Morrison
formula. Here are a few inequalities for the determinant.

Proposition 12. For any matrix A

• det(A) ≤
(

Tr(A)
n

)n
.

• Tr(I + A−1) ≤ det(A) ≤ Tr(I + A)

• det(A) ≤
∏n

i=1 ||ai|| (Hadamard)

For any positive semi-definite matrices A and B

• det(A) ≤
∏n

i=1 Aii

•
∏n

i=1(λi(A) + λi(B)) ≤ det(A + B) ≤
∏n

i=1(λi(A) + λn+1−i(B))

2Though the sign of this volume ±1 depends on the orientation of the polytope.

286

A.8. LINEAR ALGEBRA NSW

Singular Values
Singular values are like eigenvalues except we do not need to as-
sume our matrix is square.

Def 185 (Singular Value). For A ∈ Rm×n, s > 0 is singular value and
u ∈ Rm and v ∈ Rn are singular vectors if

Av = su, A>u = sv

The following is immediate

Lemma 32. v and s2 are eigenvector-eigenvalues for A>A and u and
s2 are eigenvector-eigenvalues for AA>. If A is symmetric then v is an
eigenvector and s = |λ| for its eigenvalue. [Nb. because AA squares
the eigenvalues.]

Theorem 32 (Singular Value Decomposition). The number of singu-
lar values (s1,u1, v1), ..., (sr,ur, vr) is such that r = rank(A) and

A =

r∑
i=1

siuiv
>

i ,

moreover the matrices U ∈ Rm×r or Vn×r or singular vectors orthogonal.

We can now construct something similar to the eigenvalue de-
composition.

287

A.9. RANDOM MATRICES NSW

A.9 Random Matrices
Here we recall a few results on Random Matrices so that we can
apply them to covariance matrix estimation. The text of Vershynin
provides an excellent source on this broad area.

The following result gives a concentration bound on covariance
matrices. The proof can be found in Vershynin [53].

Lemma 33. If xs ∈ Rd are bounded such that, for all s ≥ 1

E [xs | Fs−1] = 0 and E
[
xsx

>

s | Fs−1
]

= Σx
s .

We assume that there exists xmax ∈ R+, such that bound ‖xs‖∞ ≤ xmax

with probability 1 and Σx
s is positive definite. Then,

P


∥∥∥∥∥∥∥

t∑
s=1

(
xsx

>

s − Σx
s
)∥∥∥∥∥∥∥

op

≥ ε

 ≤ 2 · 92d exp

− (ε/2)2

2
∑t

s=1

(
x2

max + ‖Σx
s‖op

)2

 .
Proof. We show this argument in two steps. We first control

∑T
t=1 xtx

>

t
over a ε-net, and then extend the bound to the full supremum norm
by a continuity argument.

Using Lemma 35 (stated below) and choosing ε = 1
4 and, we can

find an ε-net N of the unit sphere Sd−1 with cardinality

|N| ≤ 9d .

By Lemma 36 (stated below), the operator norm of xsx
>

s can be
bounded on N, that is∥∥∥∥∥∥∥

t∑
s=1

(
xsx

>

s − Σx
s
)∥∥∥∥∥∥∥

op

≤ 2 max
v,w∈N

〈 t∑
s=1

(
xsx

>

s − E
[
xsx

>

s
])v,w〉

≤ 2 max
v,w∈N

∣∣∣∣∣∣∣v>
 t∑

s=1

(
xsx

>

s − E
[
xsx

>

s
])w

∣∣∣∣∣∣∣ . (A.6)

We first fix v,w ∈ N, and by Azuma–Hoeffding inequality3 for any
ε > 0 we can state that

P


∣∣∣∣∣∣∣v>

 t∑
s=1

(
xsx

>

s − E
[
xsx

>

s | Fs−1
])w

∣∣∣∣∣∣∣ ≥ ε2
 ≤ 2 exp

− (ε/2)2

2
∑t

s=1

(
x2

max + ‖Σx
s‖op

)2

 .
3We note that Vershynin applies a Hoeffding bound. This is the only substan-

tive difference in the proof here.

288

A.9. RANDOM MATRICES NSW

Given that ‖xs‖∞ ≤ xmax, we have
∥∥∥xsx

>

s − E
[
xsx

>

s | Fs−1
]∥∥∥ ≤ x2

max+
∥∥∥Σx

s

∥∥∥
op
.

Next, we unfix v,w ∈ N using a union bound. Since that N has
cardinality bounded by 9d, we obtain

P

max
v,w∈N

∣∣∣∣∣∣∣v>
 t∑

s=1

(
xsx

>

s − E
[
xsx

>

s | Fs−1
])w

∣∣∣∣∣∣∣ ≥ ε2


≤

∑
v,w∈N

P


∣∣∣∣∣∣∣v>

 t∑
s=1

(
xsx

>

s − E
[
xsx

>

s | Fs−1
])w

∣∣∣∣∣∣∣ ≥ ε2


≤ |N|
2
· 2 exp

− (ε/2)2

2
∑t

s=1

(
x2

max + ‖Σx
s‖op

)2


≤ 92d

· 2 exp

− ε2

8
∑t

s=1

(
x2

max + ‖Σx
s‖op

)2

 .
Together with (A.6), we have

P


∥∥∥∥∥∥∥

t∑
s=1

(
xsx

>

s − Σx
s
)∥∥∥∥∥∥∥

op

≥ ε

 = P

2 max
v,w∈N

∣∣∣∣∣∣∣v>
 t∑

s=1

(
xsx

>

s − E
[
xsx

>

s | Fs−1
])w

∣∣∣∣∣∣∣ ≥ ε


≤ 2 · 92d exp

− ε2

8
∑t

s=1

(
x2

max + ‖Σx
s‖op

)2

 .
Thus, we obtain the result. �

A straight-forward consequence of this result is the following.

Corollary 5. With probability 1, eventually in t it holds that∥∥∥∥∥∥∥
t∑

s=1

(
xsx

>

s − Σx
s
)∥∥∥∥∥∥∥

op

≤

√√
16 log(t)

t∑
s=1

(
x2

max + ‖Σx
s‖op

)2
.

Proof. Notice, if we set

εt =

√√
16 log(t)

t∑
s=1

(
x2

max + ‖Σx
s‖op

)2
,

then,

P


∥∥∥∥∥∥∥

t∑
s=1

(
xsx

>

s − Σx
s
)∥∥∥∥∥∥∥

op

≥ εt

 ≤ 2 · 92d

t2 .

289

A.9. RANDOM MATRICES NSW

By the Borel–Cantelli Lemma, the result holds. �

Lemma 34.

P


∥∥∥∥∥∥∥

t∑
s=1

αszsx
>

s

∥∥∥∥∥∥∥
op

≥ ε

 ≤ 2 · 92d exp
{
−

(ε/2)2

2 (zmaxxmax)2 ∑t
s=1 α

2
s

}
.

and thus, with probability 1, eventually it holds that∥∥∥∥∥∥∥
t∑

s=1

αszsx
>

s

∥∥∥∥∥∥∥
op

≤

√√
16z2

maxx2
max log(t)

t∑
s=1

α2 (A.7)

Proof. Similar to the proof of Lemma 33, we show this argument in
two steps. We first control

∑t
s=1 αszsx

>

s over a ε-net, and then extend
the bound to the full supremum norm by a continuity argument.
Notice that the summands of

∑t
s=1 αszsx

>

s are a bounded martingale
difference sequence.

Using Lemma 35 (stated below) and choosing ε = 1
4 and, we can

find an ε-net N of the unit sphere Sd−1 with cardinality

|N| ≤ 9d .

By Lemma 36 (stated below), the operator norm can be bounded by
terms on N, that is∥∥∥∥∥∥∥

t∑
s=1

αszsx
>

s

∥∥∥∥∥∥∥
op

≤ 2 max
v,w∈N

〈 t∑
s=1

αszsx
>

s

v,w〉

≤ 2 max
v,w∈N

∣∣∣∣∣∣∣v>
 t∑

s=1

αszsx
>

s

w
∣∣∣∣∣∣∣ . (A.8)

We first fix v,w ∈ N, and by Azuma–Hoeffding inequality, for any
ε > 0 we can state that

P


∣∣∣∣∣∣∣v>

 t∑
s=1

αszsx
>

s

w
∣∣∣∣∣∣∣ ≥ ε2

 ≤ 2 exp
{
−

(ε/2)2

2
∑t

s=1 (αszmaxxmax)2

}
.

Next, we unfix v,w ∈ N using a union bound. Since that N has

290

A.9. RANDOM MATRICES NSW

cardinality bounded by 9d, we obtain

P

max
v,w∈N

∣∣∣∣∣∣∣v>
 t∑

s=1

αszsx
>

s

w
∣∣∣∣∣∣∣ ≥ ε2

 ≤ ∑
v,w∈N

P


∣∣∣∣∣∣∣v>

 t∑
s=1

αszsx
>

s

w
∣∣∣∣∣∣∣ ≥ ε2


≤ |N|

2
· 2 exp

{
−

(ε/2)2

2
∑t

s=1 (αszmaxxmax)2

}
≤ 92d

· 2 exp
{
−

ε2

8
∑t

s=1 (αszmaxxmax)2

}
.

Together with (A.8), we have

P


∥∥∥∥∥∥∥

t∑
s=1

αszsx
>

s

∥∥∥∥∥∥∥
op

≥ ε

 = P

2 max
v,w∈N

∣∣∣∣∣∣∣v>
 t∑

s=1

αszsx
>

s

w
∣∣∣∣∣∣∣ ≥ ε


≤ 2 · 92d exp

{
−

ε2

8 (zmaxxmax)2 ∑t
s=1 α

2
s

}
.

Thus, we obtain the result. For (A.7), the argument follows in an
identical manner to Corollary 5. �

Lemmas 35 and 36 are stated below. For the proofs of Lem-
mas 35 and 36, we refer to Section 4 in (author?) [53].

Lemma 35 (Covering Numbers of the Euclidean ball). The covering
numbers of the unit Euclidean ball is such that, for any ε > 0(1

ε

)d

≤ N ≤

(2
ε

+ 1
)d

.

The same upper bound is true for the unit Euclidean sphere Sd−1.

Lemma 36 (Quadratic Form on a Net). Let A be an m×n matrix and
ε ∈ [0, 1/2). For any ε-net N of the sphere Sn−1 and any ε-netM of the
sphere Sm−1, we have

sup
x∈N ,y∈M

〈Ax, y〉 ≤ ‖A‖op ≤
1

1 − 2ε
sup

x∈N ,y∈M
〈Ax, y〉 . (A.9)

Moreover, if m = n and A is symmetric, then

sup
x∈N
|〈Ax, x〉| ≤ ‖A‖op ≤

1
1 − 2ε

sup
x∈N
|〈Ax, x〉| .

291

Appendix B

Function Approximation

292

B.1. OVERVIEW OF STATISTICAL LEARNING NSW

B.1 Overview of Statistical Learning
In this section we overview Statistical Learning which essentially
considers finding good function approximations to noisy data.

We give a fairly general definition of a supervised learning prob-
lem. We assume an output y ∈ Y is a noisy function of an input
x ∈ X

y = f (x) + ε ,

here ε is a random variable with zero mean and we assume that
the function f : X → Y a deterministic function. Notice this implies
f (x) = E[y|x]. (Typically X and Y are be finite-dimensional real-
valued vector spaces.)

Data and Loss. Given data D = {(x(n), y(n)) : n = 1, ...,N} and a set of
functions F our goal is to selcted a function f̂ ∈ F that approxi-
mates f . Often the set F will be parameterized with a function fθ
for each parameter θ ∈ Rp. We use a real-valued loss function (or
error function) L(y, f̂ (x)) to judge the error between an output y from
an estimate from an input f̂ . A cannoical choice is a quadratic loss
function

L(y, f (x)) = (y − f (x))2 ,

but other choices can be used. Because we are provided with both
input and output data, this setting is called supervised learning.

Goal. Given that the data D is drawn IID with distribution equal to
random variables (x̂, ŷ), our ultimate goal is to solve the optimization

min
g∈F
E

[
L(ŷ, g(x̂))

]
for a set F that has a lowminimum expected loss. However, we don’t
know the distribution of (x̂, ŷ). So we can only get an approximate
solution of this from the available data D and we must determine
what set of functions F makes efficient use of this finite set of data.
What follows is an overview of standard approaches to this problem.

B.2 Linear Regression
Using data (x(n), y(n)), n = 1, ...,N, you want to approximate a real-
valued output variable y from a p-dimensional input vector x. We

293

B.2. LINEAR REGRESSION NSW

approximate y by a linear function of x, namely,

θ>x = θ0 + θ1x1 + ... + θKxK .

Here x = (1, x1, ..., xp). We choose the θ that gives the least square
distance between y and θ>x for each data point:

minimize
N∑

n=1

(
y(n)
− θ>x(n)

)2
over θ ∈ Rp+1 .

Optimal Weights. A short calculation gives that this minimization
is solved by

θ̂ = (X>X)−1X>y

where we define the p × p matrix X, by Xi j =
∑

n x(n)
i x(n)

j and we define
y = (y(1), ..., y(N))>. Using a singular value decomposition the com-
plexity of finding θ̂ is O(Np2).

Optimizing with big N. The inverse, (X>X)−1 can involve too much
calculation when N or p is big. An alternative is to do Stochastic
Gradient Descent:

θ ← θ − α
(
y(n)
− θ>x(n)

)
x(n) .

So we move θ in the direction of x(n), one data point at a time. So
we don’t need to wait for our full calculation to get an estimate for θ.
We could also apply asynchronous updates, so we can parallelize is
the number of parameters p get big too.

Basis functions. Linear regression does not need y to be approxi-
mated by linear function of x, nor does x need to be finite dimen-
sional, but we do need a linear relationship with respect to θ.

Suppose for each x we take p different features using the basis
functions φ j(x), j = 1, ..., p. We can then perform linear regression on

θ>φ = θ0 + θ1φ1(x) + ... + θpφp(x) .

The least squares distance is given by

θ̂ = (Φ>Φ)−1Φ>y

where we define the p × p matrix Φ, by Φi j =
∑

n φi(x(n))φ j(x(n)).

294

B.2. LINEAR REGRESSION NSW

Polynomial Regression. A good example is polynomial regression.
Here we can model y as a polynomial function of x, with the basis
functions φ0(x) = 1, φ1(x) = x, φ2(x) = x2, ..., φp(x) = xp.

Regularization. Often it is important to reduce the complexity of a
model. (We will discuss why youmight want to do this in more detail
in the next section.) For linear regression, this can be achieved by
penalizing large values of θ as follows:

minimize
N∑

n=1

(
y(n)
− θ>x(n)

)2
+ λ||θ||22︸︷︷︸

penalty term

over θ ∈ Rp+1 .

where ||θ||22 =
∑

j θ
2
j is the L2 norm. This is know as ridge regression

or L2-regularization.1 We could use the L1 norm

||θ||1 =
∑

j

|θ j|.

This would be called Lasso or, when applied to other models, L1-
regularization. Notice the contours of the L1 norm are diamonds
(rather than circles for the L2 norm) so since optimal solutions tend
to end up on the corners of these diamonds, we are more likely to
end up setting some variables to be zero. In this way Lasso controls
the number of variables used in a statistical model.

Regularization and Optimization. When L2 regularization is ap-
plied to linear regression this optimal solution now satisfies

θ̂ = (X>X + λI)−1X>y

Notice before we could not guarantee that the inverse (X>X)−1 ex-
isted but with regularization the inverse is always defined. It has a
positive effect on numerical stability.

Notice when applying stochastic gradient descent we have

θ ← (1 − αλ)θ − α
(
y(n)
− θ>x(n)

)
x(n) .

Essentially the (1−αλ) term means we apply a dampening effect on
the stochastic gradient descent update.

1We use ridge regression when applied to linear regression, where L2 regular-
ization is the idea of applying a penalty like this to any regression model.

295

B.3. TRAINING, DEVELOPMENT AND TEST SETS NSW

Notice we do not explicitly limit the range of values of θ though
we know (from Lagrangian optimization) that adding a penalty such
as λ is equivalent to adding a constraint. So essentially we solve the
optimization

minimize
N∑

n=1

(
y(n)
− θ>x(n)

)2

subject to ||θ||22 ≤ κ

over θ ∈ Rp+1 .

In this way we can think of regularization as reducing the complex-
ity of our model. As the number of models that we are considering
if reduced.

B.3 Training, Development and Test sets
Using training, development and test sets and evaluating their error
is one of the most practical ways to get the most out of a machine
learning algorithm.

We want to understand how much loss/error removed in from
our predictions as the amount of data gets larger. The empirical
loss over a data set D is given by

ÊD[L(ŷ, f (x̂))] :=
1
|D|

∑
(x,y)∈D

L(y, x) .

Here the expectation is taken over the empirical distribution of the
data P̂D. Specifically we calculate mean loss over the data.

Given you have a finite set of data, if it is often worth separating
your data D = {(x(n), y(n)) : n = 1, ...N} into a training set, Dtrain, a
development (dev) set Ddev and a test set, Dtrain . The training set is
the data that you give to your regression algorithm to fit with. The
dev set you use to evaluate and move around other parameters,
such as the number of features p or the learning rate α (and in
general the size and parameters of your model). While the test set
is a data that keep for later to evaluate your regression fit, once you
have fit your regression model with all of your parameters fixed.
Thus the test set is completely fresh data; it is not seen by your
regression algorithm and you should not use it for choosing model
parameters.

296

B.3. TRAINING, DEVELOPMENT AND TEST SETS NSW

This is because you may want to test the level of performance of
your regression fit. (In general, it is not good to use data used to fit
the regression model as the regression parameters depend on this
data. In order to get an unbiased evaluation of your regression fit,
it is good to hold some data back for this.)

The development set is sometimes called the validation set. In a
reinforcement learning setting using simulation, i.e. where you do
not have a finite set of data and it is inexpensive to get new data,
you can alway simulate new data for training, developing, testing.

Figure B.1: Traing Error (red) and Test Error (green) approach the
Asymptotic Error as Data increases.

Here you fit your regression model with the training set, but don’t
use data from the test set. You can then evaluate the training and
test error:

Training Error = ÊDtrain[L(ŷ, f (x̂))]

Dev Error = ÊDdev[L(ŷ, f (x̂))]

Test Error = ÊDtrain[L(ŷ, f (x̂))]
Asymptotic Error = min

θ
E

[
L(ŷ, f (x̂))

]
Further we might have some desired level of performance. We refer
to this as the target error.

The asymptotic error assumes that the data in Dtest and Dtrain
are IID samples of a random variable (x̂, ŷ) with expectation E . Un-
der this assumption, the asymptotic error is the best fit we can get
for that regression model.

297

B.3. TRAINING, DEVELOPMENT AND TEST SETS NSW

Which Error is bigger? Notice we expect training error to be lower
than the test and asymptotic area, since a good regression will at-
tempt to minimize the loss of the data that is has seen (while it can’t
do as much with data that it has not seen). The test error should
be higher than the asymptotic error, because the distribution E is
more representative of the training data than the test data. So we
have

Training Error < Asymptotic Error < Test Error

Overfitting. We can think of the difference between the test error
and asymptotic error, as the amount of additional error we intro-
duce by having a finite data set. We could refer to the as the amount
that we have overfit the data:

overfit = Asymptotic Error − Training Error

When this problem becomes chronic this could be referred to as
overfitting (our model is optimizing the individual data points rather
than optimizing the underlying distribution of the data). We do not
usually have access to the distribution generating the data, so we
cannot evaluate the amount of overfit. Instead we have to diagnose
this symptomatically with other metrics such as the difference be-
tween the test and training error, sometimes referred to as the gen-
eralization error:

Generalization Error = Test Error − Training Error

What size should Dtrain and Dtest be? There is no fixed rule and
plenty more could be said here, but a common rule of thumb is to
have 80% of data in your training set and 20% in your test set. Notice
if we are working with simulated data that is easy to compute then
we are less constrained proportioning to our training set.

Error as N increases. See Figure B.1. In general the training error
increases as the amount of data, N, increases. This because our
fix set of parameters have more points to fit. The test error goes
down, as more the data used for train is more representative of the
true distribution of (x̂, ŷ). Both should tend towards the asymptotic
error.

Here we assume θ is the (optimal) least square fit for the data.
However, if we used stochastic gradient descent, then we would not

298

B.4. BIAS AND VARIANCE. NSW

have the optimal parameters for the data so the the relationship be-
tween test and training error is less clear cut. Generally the train-
ing and test error will decrease. If training error decreasing and
test error increase this is a symptom of overfitting (to be discussed
shortly).

Error as p increases. If we let the number of parameters of our
regression model get big, then it is more expressive. Eg. We can fit
more function to a degree 20 polynomial and a degree 2 polynomial.
So we expect the asymptotic error to decrease as we let p get bigger.
A good thing right? Well, no, not always. A degree 20 polynomial
will wiggle around more and thus might not express the underly-
ing structure of the distribution generating the data. See the two
figures below.

Figure B.2: A Simple Model Figure B.3: A Complex Model

B.4 Bias and Variance.
Consider a statistical learning problem, y = f (x) + ε. We are in-
terested in how well on average our trained regression model ap-
proximates underlying model, this is called the Bias. And we are
interested how much a fitted model is just learning the inherent
variability in the data (rather than the underlying model), this is
called the Variance. For a quadratic loss function, we can give a
conceptually nice decomposition for these terms.

299

B.4. BIAS AND VARIANCE. NSW

Bias-Variance Decomposition. Suppose as a function of data D,
we choose an estimate f̂ ∈ F . We let f̄ be the expected value of f̂ ,

f̄ (x) = ED[f̂ (x)] .

Here the expectation is over a random sample of data D. The bias
and variance of f̂ at x are given by

biasx(f̂) =
(

f̄ (x) − f (x)
)2

varx(f̂) = ED

[(
f̂ (x) − f̄ (x)

)2
]
.

We can also take an expectation over the distribution of x̂ to get the
bias and variance of f̂ . I.e.

bias(f̂) = Ex̂

[(
f̄ (x̂) − f (x̂)

)2]
, var(f̂) = ED,x̂

[(
f̂ (x̂) − f̄ (x̂)

)2
]
.

I.e. in the expectation above, we fit the dataD and then sample one
more point x̂ so see how well the fit does.

The bias gives how close the estimator’s mean value f̄ is to the
true value f . The variance of the estimator f̂ gives how spread out
the estimator is against its mean.

The following lemma shows that the mean of the quadratic loss
is the sum of the bias and variance (plus some irreducible random-
ness).

Lemma 37 (Bias-Variance Decomposition).

E(x̂,ŷ),D

[(
ŷ − f̂ (x̂)

)2
]

= bias(f̂) + var(f̂) + var(ε).

Proof. Since ŷ = f (x̂) + ε, we can expand as follows

E
[(

ŷ − f̂
)2
]

=E
[(
ε + f − f̄ + f̄ − f̂

)2
]

= E[ε2]︸︷︷︸
var(ε)

+ 2E[ε]E[(f − f̄ + f̄ − f̂)]︸ ︷︷ ︸
=0, independence and E[ε]=0

+
(

f − f̄
)2︸ ︷︷ ︸

biasx(f̂)

+2
(

f − f̄
)
E

[(
f̄ − f̂

)]
︸ ︷︷ ︸

=0

+E
[(

f̄ − f̂
)2
]
.︸ ︷︷ ︸

varx(f̂)

=bias(f̂) + var(f̂) + var(ε) .

�

300

B.4. BIAS AND VARIANCE. NSW

Bias-Variance Tradeoff. We now consider this situation where the
amount of data is fixed and we fit a series of models of varying
complexity. Here consider adding an axis for model complexity to
Figures B.2 and B.3 and take a cross section where the amount of
data is fixed. We get a picture like Figure B.4.

Figure B.4: Training and test error for fixed amount of data.

We see that when we fit a simple model, we are prone to have
high dev and training error which are close together. I.e. High bias
and low variance. If we have a complex model, then we have low
training error, but high dev error. I.e. low bias but high variance.
In the middle, we see there seems to be a sweet spot. This is a better
predictive model for this amount of data.

Notice here we use the Dev set as we using it to decide which
parameters to use. We use the test set at the end to double check
that the fit is good and agrees with the errors given by the dev set.

Informal use. The bias variance decomposition is proven for a
quadratic function. That said we can draw learning curves like
Figure B.1 and Figure B.4 for any loss function. Thus often peo-
ple refer to bias and variance more informally often in reference to
some desired error that you wish to target. High bias meaning that
your training error is far from your target error, and high variance
meaning your test/dev error is far from your training error. (Note
that bias and variance here are conflated with asymptotic error and
generalization error from earlier.2)

2These ambiguities appear to be from an attempt to shoehorn the quick and

301

B.4. BIAS AND VARIANCE. NSW

Target Train Dev Diagnosis Remedy
Error Error Error

A. 1% 15% 16% High increase model
bias complexity

with bigger model
B. 1% 0.9% 30% High Get more data

variance if not:
decrease complexity
with regularization.

C. 1% 15% 30% High bias 1st. More data
& variance 2nd. Bigger model

3rd. new model.
D. 1% 0.9% 1.1% low bias stop done.

& variance

Table B.1: Table of error symptoms, diagnosis and remdey for learn-
ing problems.

Diagnostics. We with stick with the informal terminology from
above. We can use these to form some diagnostics, remedies and a
procedure for getting a good model. (Here we are assuming that it is
relatively straight forward to generate new data and issues such as
convergence to an optimal fit have been resolved.) Below is a table
with some scenarios.

• High bias, low variance: we have fitted a model. Variance be-
tween test and training is low, so we have a good fit, but high
bias suggests the model is not expressive enough to represent
the data. Suggestion is to add more data.

• Low bias, high variance: the test error is low but the training
error is high. This is a sign the model is expressive enough to
fit to the data (maybe too expressive), adding more data will
bring down the variance (and potential up the bias). If there
is no more data, increasing regularization parameter is a good
alternative.

conceptually easy Bias-Variance calculation into the the more deep and general,
but conceptually harder, theory of statistical learning from Vapnik and Chervo-
nenkis – this is out of scope for us for now.

302

B.4. BIAS AND VARIANCE. NSW

• High bias, high variance: a bad outcome, basically the model
has not been fitted yet so you should get more data. This
should reduce variance. If this still does not work you could
regularlize to reduce bias. If this does not work you should
consider a new model to get low bias.

• Low bias and low variance: suggest you have a good working
model.

Figure, gives a flow diagram where you go from high bias to low
bias with high variance to a working model. The right handside
discussed remedies for high bias and variance.

Figure B.5: Flow chart for getting a working machine learning
model.

303

B.5. NEURAL NETWORKS NSW

B.5 Neural Networks
A neural network (or artificial neural network) is a generalization
of regression. A neural network consists of connecting together a
number of artificial neurons.

Neuron. A neuron considers of a number of input parameters x =
(1, x1, ..., xp) a weight w is applied to each of these and then this is
applied to a function to give our prediction:

ŷ = f (w>x)

The function f (z) is often called an activation function. This is rep-
resented in Figure B.6

Figure B.6: A Neuron in a Neural network.

Since the amount of data used is typically quite large, neural net-
works are trained using stochastic gradient descent (and a number
of other specialized variants). For this we need to differentiate. We
can differentiate this as follows:

∂ȳ
∂w j

= x j f ′(w>x) .

Slight more involved calculations will be used when we consider
networks of neurons. But first let’s quickly consider choices for the
activation function f (x).

Activation Functions. There are various choices of activation func-
tions f . Some common choices are given in Table B.2

The table shows three rough categories: Binary, linear and max.
Each serves a slightly different purpose. Binary helps for yes/no

304

B.5. NEURAL NETWORKS NSW

Name Formula, f (z)

Binary

0, for z < 0
1, for z ≥ 0 .

Logistic 1
1+e−z

Tanh ez
−e−z

ez+e−z

Linear z

ReLU

0, for z < 0
z, for z ≥ 0 .

Softplus log(1 + ex)

Max maxi zi

Softmax ezi∑
j ezj

Table B.2: List of some activation functions.

305

B.5. NEURAL NETWORKS NSW

decisions. Linear (and particularly ReLU) is good for gauging the
intensity of an activation (above a certain level). Max determine the
most likely variable. The activations have differentiable analogues
in each category. E.g. the logistic function is differentiable, unlike
the binary function. This allows us to apply stochastic gradient
descent.

Notice, max (and softmax) neurons are not applied to weighted
sums of inputs, like

∑
i wixi. They are directly applied to each input

xi. For this reason they are usually only used in the final layers of
a deep neural network.

A Two Layer Network. We now discuss combining neurons to-
gether to make a neural network. Traditionally, a neural network
would have consisted of a set of inputs, a single layer of neurons
and an output layer. See Figure B.7 for an instance of a two-layer
neural network.

Figure B.7: A two-layer neural network. Here squares give inputs
and circles are neurons.

Here the inputs are each given to different intermediate neurons.
The output from each intermediate neuron is then fed into an out-
put neuron that then gives a prediction. I.e. Given inputs x and
weights w our prediction ŷ is

ŷ = f (2)(z(2)) where z(2) =

l∑
j=1

a(1)
j w(2)

j ,

and
a(1)

j = f (1)
j (z(1)

j) where z(1)
j =

∑
k

w(1)
jk xk

306

B.5. NEURAL NETWORKS NSW

Here f (k) and w(k) are the activation functions and weights applied
at the k-th layer. From a theoretical perspective, if l is chosen suffi-
ciently large then appropriate weights can be chosen to any contin-
uous function bounded function with arbitrary precision. However,
in practice (and maybe in theory too), it is likely some structures
work get a closer approximation with less parameters.

Deep Neural Networks. Due to success in many practical applica-
tions. People often consider neural networks with multiple layers,
l = 1, ..., l′. (Meaning, roughly, between 3 and 300 layers). Here a
layer, l, is a set of activation functions f (l)

i , i = 1, ...,nl, and each acti-
vation receives, as input, the output from the previous layer. These
are called Deep Neural Networks. See Figure B.8.

Figure B.8: A deep neural network.

As each layer is fed a weighted linear combination of the activa-
tion output from a previous layer we have:

a(l)
j = f (l)

j (z(l)
j) where z(l)

j =
∑

i

a(l−1)
i w(l)

i j

starting initially with the inputs, a(0)
i = xi. (Implicitly we assume one

of the activations is set equal to 1, so that we can have a constant
input). Notice here really what we are doing is repeatedly composing
linear combinations of functions. Notice we do not have any loops
in our networks, i.e. we always work with directed acyclic graphs
(aka. DAGs).

Backpropagation. To train a deep neural network we need to be
able to optimize our weights. To do this different variants of stochas-
tic gradient descent are applied. To apply (stochastic) gradient de-
scent we need gradients. Essentially since a neural network is a

307

B.5. NEURAL NETWORKS NSW

composition of functions we apply the chain rule from calculus. A
conceptually useful way to organize these chain rule calculation for
a neural network is Backpropagation, which we now define.

Suppose we are given data piece of data (x, y) i.e. an input vector
x and an output number y. We can get a prediction ȳ from x by
recursively applying our above formula:

a(l)
j = f (l)

j

(∑
i

a(l−1)
i w(l)

i j

)
. (B.1)

starting initially with the inputs, a(0)
i = xi and ending up with a pre-

diction ȳ = a(l′) where l′ is the final output layer of our neural net-
work. We can then evaluate the loss between our prediction and
the observed outcome:

L(y, ȳ) .

We need optimize the weights of our deep neural network. Rather
than recursively applying forward the formula (B.1), we must apply
backward a related formula. Hence this takes its name as "back-
propagation". For this, let’s define

z(l)
j :=

∑
i

a(l−1)
i w(l)

i j and δ(l)
j :=

∂L

∂z(l)
j

.

Note that a(l)
j = f (l)

j (z(l)
j) and using notation ȧ(l)

j =
d f (l)

j

dz(l)
j

, we have that

∂z(l+1)
k

∂z(l)
j

= ȧ(l)
j w(l+1)

jk .

I.e. we can calculate partial derivatives for layer l+1 from derivatives
of the activations functions at layer l, and notice if we have the
partial derivatives with respect to z(l)

j it is easier to calculate the
other quantities that we want. Specifically,

∂L

∂w(l)
i j

=
∂z(l)

j

∂w(l)
i j

∂L

∂z(l)
j

= a(l−1)
i δ(l)

j .

Nowwe can apply to the chain rule to get the derivatives with respect

308

B.5. NEURAL NETWORKS NSW

to z(l)
j :

δ(l)
j =

∑
k

∂z(l+1)
k

∂z(l)
j

∂L

∂z(l+1)
k

=
∑

k

ȧ(l)
j w(l+1)

jk δ(l+1)
k (B.2)

Notice once we have obtained the values of each z(l)
j in our forward

pass using (B.1) , we can the work backwards using (B.2) from the
final layer to the first to calculate each δ(l)

j .
The interactions between these formulas in Backpropagation can

be summarized in Figure B.9. The key terms and formulas in back-
propagation are summarized in Table B.3, below.

Figure B.9: Forward and backward pass of Backpropagation.

References
Everything on statistical learning, linear regression, bias-variance
and neural networks is by now very standard machine learning.
See Friedman et al. [18], Murphy [35] or Goodfellow [20].

309

B.5. NEURAL NETWORKS NSW

Backpropagation
Definitions Formulas

z(l)
j :=

∑
i a(l−1)

i w(l)
i j a(l)

j = f (l)
j (z j) (forward pass)

a(0)
j := x̂ j δ(l)

j =
∑

k ȧ(l)
j w(l+1)

jk δ(l+1)
k (backward pass)

δ(l)
j := ∂L

∂z(l)
j

∂L
∂w(l)

i j

= a(l−1)
i δ(l)

j .

Table B.3: Backpropagation Definitions.

310

Index

Bellman Equation, 9, 33, 38, 44

Closed Stopping Set, 74

discount factor, 37
Dynamic Program, 9

Markov Decision Process, 32

Natural Gradient., 163

OLSA, 73
One-Step-Look-Ahead, 73
Optimal Stopping Problem, 73

Plant Equation, 8, 31
Policy Evaluation, 55
Policy Improvement, 55
Policy Iteration, 61

Q-Factor, 38

Reinforcement Learning, 208

The Secretary Problem, 76

Value Function, 32
Value Iteration, 56

311

Bibliography

[1] Karl J Astrom. Optimal control of markov processes with in-
complete state information. Journal of mathematical analysis
and applications, 10(1):174–205, 1965.

[2] Francis Bach and Eric Moulines. Non-strongly-convex smooth
stochastic approximation with convergence rate O (1 / n) arXiv
: 1306 . 2119v1 [cs . LG] 10 Jun 2013. pages 1–42, 2013.

[3] Leemon C Baird III. Advantage updating. Technical report,
WRIGHT LAB WRIGHT-PATTERSON AFB OH, 1993.

[4] Richard Bellman. The theory of dynamic programming. Bul-
letin of the American Mathematical Society, 60(6):503–515,
1954.

[5] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adap-
tive algorithms and stochastic approximations, volume 22.
Springer Science & Business Media, 2012.

[6] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas,
and Dimitri P Bertsekas. Dynamic programming and optimal
control, volume 1. Athena scientific Belmont, MA, 1995.

[7] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic
programming. Athena Scientific, 1996.

[8] Jalaj Bhandari and Daniel Russo. Global optimality
guarantees for policy gradient methods. arXiv preprint
arXiv:1906.01786, 2019.

[9] David Blackwell. Discounted Dynamic Programming. Ann.
Math. Statist., 36(1):226–235, 1965.

312

BIBLIOGRAPHY NSW

[10] David Blackwell. Positive dynamic programming. In Proceed-
ings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics, volume 11, pages 415–
418, Berkeley, Calif., 1967. University of California Press.

[11] Vivek S Borkar. Stochastic approximation: a dynamical systems
viewpoint, volume 48. Springer, 2009.

[12] P Bremaud. Markov Chains: Gibbs Fields, Monte Carlo Simula-
tion, and Queues. Texts in Applied Mathematics. Springer New
York, 2013.

[13] Richard S Bucy and Peter D Joseph. Filtering for stochastic pro-
cesses with applications to guidance. American Mathematical
Soc., 1968.

[14] Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in
hidden Markov models. Springer Science & Business Media,
2006.

[15] Y S Chow, H Robbins, and D Siegmund. Great expectations:
the theory of optimal stopping. Houghton Mifflin, 1971.

[16] Mark HA Davis. Martingale methods in stochastic control. In
Stochastic Control Theory and Stochastic Differential Systems,
pages 85–117. Springer, 1979.

[17] J L Doob. Classical Potential Theory and Its Probabilistic Coun-
terpart: Advanced Problems. Grundlehren der mathematis-
chen Wissenschaften. Springer New York, 1984.

[18] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The
elements of statistical learning, volume 1. Springer series in
statistics New York, 2001.

[19] Paul Glasserman. Monte Carlo method in financial engineering.
2004.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016. http://www.deeplearningbook.org.

[21] M S Grewal and A P Andrews. Kalman filtering: theory and
practice with MATLAB, 4th. Wiley, 2014.

313

http://www.deeplearningbook.org

BIBLIOGRAPHY NSW

[22] P Hall, C C Heyde, Z W Birnbaum, and E Lukacs. Martingale
Limit Theory and Its Application. Communication and Behavior.
Elsevier Science, 2014.

[23] Hado V Hasselt. Double q-learning. In Advances in neural
information processing systems, pages 2613–2621, 2010.

[24] R Howard. Dynamic programming and Markov processes.
1960.

[25] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On
the Convergence of Stochastic Iterative Dynamic Programming
Algorithms. Neural Computation, 1994.

[26] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cas-
sandra. Planning and acting in partially observable stochastic
domains. Artificial intelligence, 101(1-2):99–134, 1998.

[27] H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice
Hall, 2002.

[28] Harold Kushner and G George Yin. Stochastic approximation
and recursive algorithms and applications, volume 35. Springer
Science & Business Media, 2003.

[29] Harold Joseph Kushner and Dean S Clark. Stochastic approx-
imation methods for constrained and unconstrained systems,
volume 26. Springer Science & Business Media, 1978.

[30] Joseph LaSalle. Some extensions of liapunov’s second method.
IRE Transactions on circuit theory, 7(4):520–527, 1960.

[31] D A Levin, Y Peres, and E L Wilmer. Markov Chains and Mixing
Times. American Mathematical Soc.

[32] Daniel Liberzon. Calculus of variations and optimal control the-
ory: a concise introduction. Princeton university press, 2011.

[33] Ljung. Analysis of recursive stochastic algorithms. IEEE Trans-
actions on Automatic Control, 22(4):551–575, 1977.

[34] Aleksandr Mikhailovich Lyapunov. The general problem of the
stability of motion. International journal of control, 55(3):531–
534, 1992.

314

BIBLIOGRAPHY NSW

[35] Kevin P Murphy. Machine learning: a probabilistic perspective.
MIT press, 2012.

[36] J.R. Norris and J.R. Norris. Markov Chains. Cambridge Se-
ries in Statistical and Probabilistic Mathematics. Cambridge
University Press, 1998.

[37] M L Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Series in Probability and Statis-
tics. Wiley, 1994.

[38] H Robbins and S Monro. A stochastic approximation method.
The Annals of Mathematical Statistics, 22:400–407, 1951.

[39] Herbert Robbins and David Siegmund. A convergence theo-
rem for non negative almost supermartingales and some ap-
plications. In Optimizing methods in statistics, pages 233–257.
Elsevier, 1971.

[40] Jeffrey S Rosenthal. Convergence rates for markov chains.
Siam Review, 37(3):387–405, 1995.

[41] Burhaneddin Sandikci. Reduction of a pomdp to anmdp. Wiley
Encyclopedia of Operations Research and Management Science,
2010.

[42] Herbert Scarf. The optimality of (s,s) policies in the dynamic
inventory problem. Optimal pricing, inflation, and the cost of
price adjustment, 1959.

[43] A N Shiryaev. Optimal Stopping Rules. Stochastic Modelling
and Applied Probability. Springer Berlin Heidelberg, 2009.

[44] Rayadurgam Srikant. The mathematics of Internet congestion
control. Springer Science & Business Media, 2012.

[45] Ralph E Strauch. Negative Dynamic Programming. Ann. Math.
Statist., 37(4):871–890, 1966.

[46] Charlotte Striebel. Sufficient statistics in the optimum control
of stochastic systems. Journal of Mathematical Analysis and
Applications, 12(3):576–592, 1965.

[47] Richard S. Sutton. Learning to Predict by the Methods of Tem-
poral Differences. Machine Learning, 1988.

315

BIBLIOGRAPHY NSW

[48] Richard S. Sutton and Andrew G. Barto. Reinforcement Learn-
ing, Second Edition: An Introduction. 2018.

[49] John N Tsitsiklis. Asynchronous stochastic approximation and
Q-learning. Machine Learning, 16(3):185–202, sep 1994.

[50] John N. Tsitsiklis and Benjamin Van Roy. Analysis of temporal-
difference learning with function approximation. In Advances
in Neural Information Processing Systems, 1997.

[51] John N. Tsitsiklis and Benjamin Van Roy. Optimal stopping of
Markov processes: Hilbert space theory, approximation algo-
rithms, and an application to pricing high-dimensional finan-
cial derivatives. IEEE Transactions on Automatic Control, 1999.

[52] Hado Van Hasselt, Arthur Guez, and David Silver. Deep rein-
forcement learning with double q-learning. In Thirtieth AAAI
conference on artificial intelligence, 2016.

[53] Roman Vershynin. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cambridge
university press, 2018.

[54] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt,
Marc Lanctot, and Nando De Freitas. Dueling network ar-
chitectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

[55] WardWhitt. Proofs of themartingale FCLT. Probability Surveys,
2007.

[56] Peter Whittle. Optimization over time. John Wiley & Sons, Inc.,
1982.

[57] D. Williams. Probability with Martingales. Cambridge mathe-
matical textbooks. Cambridge University Press, 1991.

[58] Martin Zinkevich. Online Convex Programming and General-
ized Infinitesimal Gradient Ascent. In ICML, pages 928–936,
2003.

316

	Optimal Control
	Dynamic Programming
	Markov Chains with Rewards
	Markov Decision Processes
	Infinite Time Horizon
	Algorithms for MDPs
	Optimal Stopping
	Inventory Control.
	Partially Observable MDPs
	LQR and the Kalman Filter

	Continuous Time Control
	Continuous Time Dynamic Programming
	Calculus of Variations
	Pontyagin's Maximum Prinicple
	Stochastic Integration
	Diffusion Control Problems
	Merton Portfolio Optimization

	Stochastic Approximation
	Lyapunov Functions
	Robbins-Monro.
	Stochastic Gradient Decent
	Asynchronous Update
	ODE method for Stochastic Approximation
	Online Convex Optimization

	Bandits and Experts
	Stochastic Multi-Armed Bandit
	Upper Confidence Bound.
	Lai and Robbins Lower Bound.
	Gittins' Index Theorem
	Non-Stochastic Multi-armed Bandits
	Stochastic Regression

	Tabular Reinforcement Learning
	Principles of Reinforcement Learning
	Policy Evaluation: MC and TD methods
	Q-learning
	SARSA

	Reinforcement Learning with Function Approximation
	Temporal Differences: Linear Approximation
	Policy Gradients
	Linear Approximation and TD Learning
	Linear Approximation and Stopping
	Cross Entropy Method

	Reinforcement Learning with Neural Networks
	Deep Q-Network (DQN)

	Appendix
	Probability.
	Stochastic Integration
	Gronwall's Lemma
	Projections
	Misc Results
	Utility Theory
	Lagrangian Optimization and Duality
	Linear Algebra
	Random Matrices

	Function Approximation
	Overview of Statistical Learning
	Linear Regression
	Training, Development and Test sets
	Bias and Variance.
	Neural Networks

